るりまサーチ

最速Rubyリファレンスマニュアル検索!
483件ヒット [1-100件を表示] (0.011秒)

別のキーワード

  1. _builtin using
  2. main using
  3. module using
  4. processcontroller using_at_exit_when_process_exit
  5. shell/process-controller using_at_exit_when_process_exit

検索結果

<< 1 2 3 ... > >>

main.using(module) -> self (18113.0)

引数で指定したモジュールで定義された拡張を有効にします。

...ents_rdoc.html#label-Scope

@param module 有効にするモジュールを指定します。

//emlist[例][ruby]{
module Sloth
refine String do
def downcase
self
end
end
end

"ABC".downcase # => "abc"

using
Sloth

"ABC".downcase # => "ABC"
//}

@see Module#refine, Module#using...

Module#using(module) -> self (18107.0)

引数で指定したモジュールで定義された拡張を現在のクラス、モジュールで有 効にします。

...ルで有
効にします。

有効にした拡張の有効範囲については以下を参照してください。

* https://docs.ruby-lang.org/en/master/syntax/refinements_rdoc.html#label-Scope

@param module 有効にするモジュールを指定します。

@see Module#refine, main.using...

Shell::ProcessController::USING_AT_EXIT_WHEN_PROCESS_EXIT -> true (6101.0)

@todo

@todo

Module.used_modules -> [Module] (28.0)

現在のスコープで using されているすべてのモジュールを配列で返します。 配列内のモジュールの順番は未定義です。

...現在のスコープで using されているすべてのモジュールを配列で返します。
配列内のモジュールの順番は未定義です。

//emlist[例][ruby]{
module A
refine Object do
end
end

module B
refine Object do
end
end

using
A
using
B
p Module.used_modules
#=...

Module#refine(klass) { ... } -> Module (24.0)

引数 klass で指定したクラスまたはモジュールだけに対して、ブロックで指定した機能を提供で きるモジュールを定義します。定義した機能は Module#refine を使用せずに直 接 klass に対して変更を行う場合と異なり、限られた範囲のみ有効にできます。 そのため、既存の機能を局所的に修正したい場合などに用いる事ができます。

...ticles/0041/0041-200Special-refinement.html
* https://docs.ruby-lang.org/en/master/syntax/refinements_rdoc.html

定義した機能は main.using, Module#using を実行した場合のみ
有効になります。

@param klass 拡張する対象のクラスまたはモジュールを指定します...
...機能を持つ無名のモジュールを返します。

//emlist[例][ruby]{
class C
def foo
puts "C#foo"
end
end

module M
refine C do
def foo
puts "C#foo in M"
end
end
end

x = C.new
x.foo # => "C#foo"

using
M

x = C.new
x.foo # => "C#foo in M"
//}

@see main.using...

絞り込み条件を変える

Kernel#check_signedness(type, headers = nil, opts = nil) -> "signed" | "unsigned" | nil (16.0)

Returns the signedness of the given +type+. You may optionally specify additional +headers+ to search in for the +type+. If the +type+ is found and is a numeric type, a macro is passed as a preprocessor constant to the compiler using the +type+ name, in uppercase, prepended with 'SIGNEDNESS_OF_', followed by the +type+ name, followed by '=X' where 'X' is positive integer if the +type+ is unsigned, or negative integer if the +type+ is signed. For example, if size_t is defined as unsigned, then check_signedness('size_t') would returned +1 and the SIGNEDNESS_OF_SIZE_T=+1 preprocessor macro would be passed to the compiler, and SIGNEDNESS_OF_INT=-1 if check_signedness('int') is done.

...eaders+ to search in for the +type+.

If the +type+ is found and is a numeric type, a macro is passed as a
preprocessor constant to the compiler using the +type+ name, in
uppercase, prepended with 'SIGNEDNESS_OF_', followed by the +type+
name, followed by '=X' where 'X' is positive integer if t...

Kernel#check_signedness(type, headers = nil, opts = nil) { ... } -> "signed" | "unsigned" | nil (16.0)

Returns the signedness of the given +type+. You may optionally specify additional +headers+ to search in for the +type+. If the +type+ is found and is a numeric type, a macro is passed as a preprocessor constant to the compiler using the +type+ name, in uppercase, prepended with 'SIGNEDNESS_OF_', followed by the +type+ name, followed by '=X' where 'X' is positive integer if the +type+ is unsigned, or negative integer if the +type+ is signed. For example, if size_t is defined as unsigned, then check_signedness('size_t') would returned +1 and the SIGNEDNESS_OF_SIZE_T=+1 preprocessor macro would be passed to the compiler, and SIGNEDNESS_OF_INT=-1 if check_signedness('int') is done.

...eaders+ to search in for the +type+.

If the +type+ is found and is a numeric type, a macro is passed as a
preprocessor constant to the compiler using the +type+ name, in
uppercase, prepended with 'SIGNEDNESS_OF_', followed by the +type+
name, followed by '=X' where 'X' is positive integer if t...

Kernel#convertible_int(type, headers = nil, opts = nil) (16.0)

Returns the convertible integer type of the given +type+. You may optionally specify additional +headers+ to search in for the +type+. _Convertible_ means actually same type, or typedefed from same type. If the +type+ is a integer type and _convertible_ type is found, following macros are passed as preprocessor constants to the compiler using the +type+ name, in uppercase. * 'TYPEOF_', followed by the +type+ name, followed by '=X' where 'X' is the found _convertible_ type name. * 'TYP2NUM' and 'NUM2TYP, where 'TYP' is the +type+ name in uppercase with replacing '_t' suffix with 'T', followed by '=X' where 'X' is the macro name to convert +type+ to +Integer+ object, and vice versa. For example, if foobar_t is defined as unsigned long, then convertible_int("foobar_t") would return "unsigned long", and define macros: #define TYPEOF_FOOBAR_T unsigned long #define FOOBART2NUM ULONG2NUM #define NUM2FOOBART NUM2ULONG

...e type.

If the +type+ is a integer type and _convertible_ type is found,
following macros are passed as preprocessor constants to the
compiler using the +type+ name, in uppercase.

* 'TYPEOF_', followed by the +type+ name, followed by '=X' where 'X'
is the found _convertible_ type name. *...

Kernel#convertible_int(type, headers = nil, opts = nil) { ... } (16.0)

Returns the convertible integer type of the given +type+. You may optionally specify additional +headers+ to search in for the +type+. _Convertible_ means actually same type, or typedefed from same type. If the +type+ is a integer type and _convertible_ type is found, following macros are passed as preprocessor constants to the compiler using the +type+ name, in uppercase. * 'TYPEOF_', followed by the +type+ name, followed by '=X' where 'X' is the found _convertible_ type name. * 'TYP2NUM' and 'NUM2TYP, where 'TYP' is the +type+ name in uppercase with replacing '_t' suffix with 'T', followed by '=X' where 'X' is the macro name to convert +type+ to +Integer+ object, and vice versa. For example, if foobar_t is defined as unsigned long, then convertible_int("foobar_t") would return "unsigned long", and define macros: #define TYPEOF_FOOBAR_T unsigned long #define FOOBART2NUM ULONG2NUM #define NUM2FOOBART NUM2ULONG

...e type.

If the +type+ is a integer type and _convertible_ type is found,
following macros are passed as preprocessor constants to the
compiler using the +type+ name, in uppercase.

* 'TYPEOF_', followed by the +type+ name, followed by '=X' where 'X'
is the found _convertible_ type name. *...
<< 1 2 3 ... > >>