るりまサーチ

最速Rubyリファレンスマニュアル検索!
607件ヒット [201-300件を表示] (0.009秒)
トップページ > クラス:Set[x]

ライブラリ

キーワード

検索結果

<< < 1 2 3 4 5 ... > >>

Set#disjoint?(set) -> bool (1.0)

self と set が互いに素な集合である場合に true を返します。

...self と set が互いに素な集合である場合に true を返します。

逆に self と set の共通集合かを確認する場合には Set#intersect? を
使用します。

@param self Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトで...
...ない場合に発生します。

//emlist[][ruby]{
require 'set'
p Set[1, 2, 3].disjoint? Set[3, 4] # => false
p Set[1, 2, 3].disjoint? Set[4, 5] # => true
//}

@see Set#intersect?...
...ない場合に発生します。

//emlist[][ruby]{
p Set[1, 2, 3].disjoint? Set[3, 4] # => false
p Set[1, 2, 3].disjoint? Set[4, 5] # => true
//}

@see Set#intersect?...

Set#divide {|o1, o2| ... } -> Set (1.0)

元の集合をブロックで定義される関係で分割し、その結果を集合として返します。

...require 'set'
numbers = Set.new(1..6)
set
= numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set
= numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,...
...# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'

board = Set.new
m, n = 8, 2
for i...
...night_move = Set[1,2]
p board.divide { |i,j|
Set
[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2, 2],...
...ers = Set.new(1..6)
set
= numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set
= numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,
# #<Set: {3...
...#<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,...
...2]
p board.divide { |i,j|
Set
[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2, 2], [4, 1], [6, 2], [8,...

Set#divide {|o| ... } -> Set (1.0)

元の集合をブロックで定義される関係で分割し、その結果を集合として返します。

...require 'set'
numbers = Set.new(1..6)
set
= numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set
= numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,...
...# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'

board = Set.new
m, n = 8, 2
for i...
...night_move = Set[1,2]
p board.divide { |i,j|
Set
[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2, 2],...
...ers = Set.new(1..6)
set
= numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set
= numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,
# #<Set: {3...
...#<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,...
...2]
p board.divide { |i,j|
Set
[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2, 2], [4, 1], [6, 2], [8,...

Set#dup -> Set (1.0)

集合を複製して返します。

...れも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。

Set
クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
...
...ため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してください。

//emlist[][ruby]{
require 'set'
s1 = Set[10, 20]
s2 = s1.dup
s2 << 30
p s1 # => #<Set: {10, 20}>
p s2 # => #<Set: {10, 20, 30}>
//}

@see Object#clone...
...せん。
このため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してください。

//emlist[][ruby]{
s1 = Set[10, 20]
s2 = s1.dup
s2 << 30
p s1 # => #<Set: {10, 20}>
p s2 # => #<Set: {10, 20, 30}>
//}

@see Object#clone...

Set#each {|o| ... } -> self (1.0)

集合の各要素についてブロックを実行します。

...集合の各要素についてブロックを実行します。

//emlist[][ruby]{
require 'set'
s = Set[10, 20]
ary = []
s.each {|num| ary << num + 1}
p ary # => [11, 21]
//}...
...集合の各要素についてブロックを実行します。

//emlist[][ruby]{
s = Set[10, 20]
ary = []
s.each {|num| ary << num + 1}
p ary # => [11, 21]
//}...

絞り込み条件を変える

Set#empty? -> bool (1.0)

集合が要素を 1 つも持たないときに true を返します。

...集合が要素を 1 つも持たないときに true を返します。

//emlist[][ruby]{
require 'set'
p Set[10, 20].empty? # => false
p Set[].empty? # => true
//}...
...集合が要素を 1 つも持たないときに true を返します。

//emlist[][ruby]{
p Set[10, 20].empty? # => false
p Set[].empty? # => true
//}...

Set#filter! {|element| ... } -> self | nil (1.0)

各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。

各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。

@return 変更があった場合は self を、変更がなかった場合は nil を返します。

Set#flatten -> Set (1.0)

集合を再帰的に平坦化します。

...要素として self が再帰的に現れた場合に発生
します。

//emlist[][ruby]{
require 'set'
s = Set[Set[1,2], 3]
p s.flatten # => #<Set: {1, 2, 3}>
p s # => #<Set: {#<Set: {1, 2}>, 3}>
s.flatten!
p s # => #<Set: {1, 2, 3}>
//}

@see Array#flatten...
...rror 集合の要素として self が再帰的に現れた場合に発生
します。

//emlist[][ruby]{
s = Set[Set[1,2], 3]
p s.flatten # => #<Set: {1, 2, 3}>
p s # => #<Set: {#<Set: {1, 2}>, 3}>
s.flatten!
p s # => #<Set: {1, 2, 3}>
//}

@see Array#flatten...

Set#flatten! -> self | nil (1.0)

集合を再帰的に平坦化します。

...要素として self が再帰的に現れた場合に発生
します。

//emlist[][ruby]{
require 'set'
s = Set[Set[1,2], 3]
p s.flatten # => #<Set: {1, 2, 3}>
p s # => #<Set: {#<Set: {1, 2}>, 3}>
s.flatten!
p s # => #<Set: {1, 2, 3}>
//}

@see Array#flatten...
...rror 集合の要素として self が再帰的に現れた場合に発生
します。

//emlist[][ruby]{
s = Set[Set[1,2], 3]
p s.flatten # => #<Set: {1, 2, 3}>
p s # => #<Set: {#<Set: {1, 2}>, 3}>
s.flatten!
p s # => #<Set: {1, 2, 3}>
//}

@see Array#flatten...
<< < 1 2 3 4 5 ... > >>