3件ヒット
[1-3件を表示]
(0.131秒)
検索結果
先頭3件
-
Matrix
:: LUPDecomposition # solve(b) -> Vector | Matrix (81661.0) -
self が正方行列 A の LUP 分解の時、一次方程式 Ax = b の解を返します。 b には Vector, Matrix, 数値の配列を指定出来ます。
self が正方行列 A の LUP 分解の時、一次方程式 Ax = b の解を返します。
b には Vector, Matrix, 数値の配列を指定出来ます。
それぞれベクトルのサイズ、行列の行数、配列のサイズが A の列数と一致していなければなりません。
返り値は b が行列なら行列、それ以外はベクトルになります。
@param b 一次方程式の定数項を指定します。
//emlist[][ruby]{
require 'matrix'
lup = Matrix[[2, 1], [1, 2]].lup
lup.solve([1, -1]) #=> ... -
Matrix
# lup -> Matrix :: LUPDecomposition (37102.0) -
行列の LUP 分解を保持したオブジェクトを返します。
行列の LUP 分解を保持したオブジェクトを返します。
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'
a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.... -
Matrix
# lup _ decomposition -> Matrix :: LUPDecomposition (37102.0) -
行列の LUP 分解を保持したオブジェクトを返します。
行列の LUP 分解を保持したオブジェクトを返します。
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'
a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p....