829件ヒット
[101-200件を表示]
(0.180秒)
ライブラリ
- matrix (829)
キーワード
- * (24)
- ** (12)
- + (12)
- +@ (12)
- - (12)
- -@ (12)
-
/ (24) - == (12)
- [] (12)
- []= (7)
- adjugate (12)
- antisymmetric? (7)
- coerce (12)
- cofactor (12)
-
cofactor
_ expansion (12) - collect (24)
- collect! (14)
- column (24)
- combine (8)
- component (12)
- det (12)
- determinant (12)
- diagonal? (12)
- each (24)
-
each
_ with _ index (24) - eigen (12)
- eigensystem (12)
- element (12)
- empty? (12)
-
entrywise
_ product (8) - eql? (12)
-
find
_ index (36) -
first
_ minor (12) -
hadamard
_ product (8) - hermitian? (12)
- hstack (12)
- index (36)
-
laplace
_ expansion (12) - lup (12)
-
lup
_ decomposition (12) - map (24)
- map! (14)
- minor (24)
- normal? (12)
- orthogonal? (12)
- permutation? (12)
- rect (12)
- rectangular (12)
- regular? (12)
- round (12)
- row (24)
- singular? (12)
-
skew
_ symmetric? (7) - symmetric? (12)
- trace (12)
- unitary? (12)
- vstack (12)
検索結果
先頭5件
-
Matrix
# hstack(*matrices) -> Matrix (9320.0) -
行列 self と matrices を横に並べた行列を生成します。
...行列 self と matrices を横に並べた行列を生成します。
Matrix.hstack(self, *matrices) と同じです。
//emlist[例][ruby]{
require 'matrix'
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
//}
@param matrices 並べる行......列。すべての行列の行数がselfの行数と一致していなければならない
@raise ExceptionForMatrix::ErrDimensionMismatch 行数の異なる行列がある場合に発生します
@see Matrix.hstack, Matrix#vstack... -
Matrix
# lup _ decomposition -> Matrix :: LUPDecomposition (9308.0) -
行列の LUP 分解を保持したオブジェクトを返します。
...
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'......a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
//}
@see Matrix::LUPDecomposition... -
Matrix
# rect -> [Matrix , Matrix] (9308.0) -
行列を実部と虚部に分解したものを返します。
...行列を実部と虚部に分解したものを返します。
//emlist[例][ruby]{
m.rect == [m.real, m.imag] # ==> true for all matrices m
//}
@see Matrix#imaginary, Matrix#real... -
Matrix
# rectangular -> [Matrix , Matrix] (9308.0) -
行列を実部と虚部に分解したものを返します。
...行列を実部と虚部に分解したものを返します。
//emlist[例][ruby]{
m.rect == [m.real, m.imag] # ==> true for all matrices m
//}
@see Matrix#imaginary, Matrix#real... -
Matrix
# first _ minor(row , column) -> Matrix (9220.0) -
self から第 row 行と第 column 列を取り除いた行列を返します。
...self から第 row 行と第 column 列を取り除いた行列を返します。
@param row 行
@param column 列
@raise ArgumentError row, column が行列の行数/列数を越えている場合に発生します。... -
Matrix
# adjugate -> Matrix (9214.0) -
余因子行列を返します。
...余因子行列を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[7,6],[3,9]].adjugate # => Matrix[[9, -6], [-3, 7]]
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方でない場合に発生します。
@see Matrix#cofactor... -
Matrix
# collect(which = :all) {|x| . . . } -> Matrix (9214.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...umerator を返します。
@param which which に以下の Symbol を指定することで、
引数として使われる要素を限定できます。
デフォルトは、:all (全ての要素)です。
指定できる Symbol の詳細は、 Matrix#each......の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
p m.map(:diagonal) { |x| x * 10 } # => Matrix[[10, 2], [3, 40]]
//}
@see Matrix#each, Matrix#map!... -
Matrix
# eigensystem -> Matrix :: EigenvalueDecomposition (9214.0) -
行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
...行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
Matrix::EigenvalueDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(右固有ベクトル、固有値行列、左固有ベクトル)
を得ることがで......mlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
@see Matrix::Ei......genvalueDecomposition... -
Matrix
# collect {|x| . . . } -> Matrix (9208.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...適用を繰り返した結果を、要素として持つ行列を生成します。
ブロックがない場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
//}
@see Matrix#each... -
Matrix
# vstack -> Matrix (9208.0) -
行列 self と matrices を縦に並べた行列を生成します。
...と matrices を縦に並べた行列を生成します。
Matrix.vstack(self, *matrices) と同じです。
//emlist[例][ruby]{
require 'matrix'
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
//}
@see Matrix.vstack, Matrix#hstack... -
Matrix
# cofactor _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (9132.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...けです。かわりにMatrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expa......=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrD......imensionMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor...