るりまサーチ

最速Rubyリファレンスマニュアル検索!
325件ヒット [101-200件を表示] (0.020秒)

別のキーワード

  1. shell/builtin-command new
  2. _builtin -
  3. shell/builtin-command each
  4. open-uri open
  5. irb/input-method new

ライブラリ

キーワード

検索結果

<< < 1 2 3 4 > >>

Integer#digits(base) -> [Integer] (108.0)

base を基数として self を位取り記数法で表記した数値を配列で返します。 base を指定しない場合の基数は 10 です。

...digits(16) # => [0, 1]

self は非負整数でなければいけません。非負整数でない場合は、Math::DomainErrorが発生します。

-
10.digits # Math::DomainError: out of domain が発生

@return 位取り記数法で表した時の数値の配列
@param base 基数となる...

Integer#floor(ndigits = 0) -> Integer (108.0)

self と等しいかより小さな整数のうち最大のものを返します。

...整数で指定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。

//emlist[][ruby]{
1.floor # => 1
1.floor(2) # => 1
18.floor(-1) # => 10
(-18).floor(-1) # => -20
//}

@see Numeric#floor...

Integer#floor(ndigits = 0) -> Integer | Float (108.0)

self と等しいかより小さな整数のうち最大のものを返します。

...負の整数を指定した場合、Integer を返します。
小数点位置から左に少なくとも n 個の 0 が並びます。

//emlist[][ruby]{
1.floor # => 1
1.floor(2) # => 1.0
18.floor(-1) # => 10
(-18).floor(-1) # => -20
//}

@see Numeric#floor...

Integer#times -> Enumerator (108.0)

self 回だけ繰り返します。 self が正の整数でない場合は何もしません。

...self - 1 までの数値が渡されます。

3.times { puts "Hello, World!" } # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" } # 何も表示されない。
5.times {|n| print n } # 01234 と表示される。

@see Integer#upto, Integer#downt...

Integer#times {|n| ... } -> self (108.0)

self 回だけ繰り返します。 self が正の整数でない場合は何もしません。

...self - 1 までの数値が渡されます。

3.times { puts "Hello, World!" } # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" } # 何も表示されない。
5.times {|n| print n } # 01234 と表示される。

@see Integer#upto, Integer#downt...

絞り込み条件を変える

Integer#to_f -> Float (108.0)

self を浮動小数点数(Float)に変換します。

...at::INFINITY を返します。

//emlist[][ruby]{
1.to_f # => 1.0
(Float::MAX.to_i * 2).to_f # => Infinity
(-Float::MAX.to_i * 2).to_f # => -Infinity
//}...

Integer#truncate(ndigits = 0) -> Integer (108.0)

0 から self までの整数で、自身にもっとも近い整数を返します。

...定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。

//emlist[][ruby]{
1.truncate # => 1
1.truncate(2) # => 1
18.truncate(-1) #=> 10
(-18).truncate(-1) #=> -10
//}

@see Numeric#truncate...

Integer#truncate(ndigits = 0) -> Integer | Float (108.0)

0 から self までの整数で、自身にもっとも近い整数を返します。

...数を指定した場合、Integer を返します。
小数点位置から左に少なくとも n 個の 0 が並びます。

//emlist[][ruby]{
1.truncate # => 1
1.truncate(2) # => 1.0
18.truncate(-1) #=> 10
(-18).truncate(-1) #=> -10
//}

@see Numeric#trunca...

Integer#&(other) -> Integer (102.0)

ビット二項演算子。論理積を計算します。

ビット二項演算子。論理積を計算します。

@param other 数値

例:

1 & 1 # => 1
2 & 3 # => 2

Integer#*(other) -> Numeric (102.0)

算術演算子。積を計算します。

算術演算子。積を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

例:

# 積
2 * 3 # => 6

絞り込み条件を変える

Integer#**(other) -> Numeric (102.0)

算術演算子。冪(べき乗)を計算します。

算術演算子。冪(べき乗)を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

例:

2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1

Integer#+(other) -> Numeric (102.0)

算術演算子。和を計算します。

算術演算子。和を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

例:

# 和
3 + 4 # => 7

Integer#/(other) -> Numeric (102.0)

算術演算子。商を計算します。

Fixnum#quo と同じ働きをします(有理数または整数を返します)。

例:

10 / 3 # => 3

require 'mathn'
10 / 3 # => (10/3)
算術演算子。商を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

Integer#<(other) -> bool (102.0)

比較演算子。数値として小さいか判定します。

比較演算子。数値として小さいか判定します。

@param other 比較対象の数値
@return self よりも other が大きい場合 true を返します。
そうでなければ false を返します。

例:

1 < 1 # => false
1 < 2 # => true

Integer#<=(other) -> bool (102.0)

比較演算子。数値として等しいまたは小さいか判定します。

比較演算子。数値として等しいまたは小さいか判定します。

@param other 比較対象の数値
@return self よりも other の方が大きい場合か、
両者が等しい場合 true を返します。
そうでなければ false を返します。

例:

1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true

絞り込み条件を変える

Integer#==(other) -> bool (102.0)

比較演算子。数値として等しいか判定します。

比較演算子。数値として等しいか判定します。

@param other 比較対象の数値
@return self と other が等しい場合 true を返します。
そうでなければ false を返します。

例:

1 == 2 # => false
1 == 1.0 # => true

Integer#===(other) -> bool (102.0)

比較演算子。数値として等しいか判定します。

比較演算子。数値として等しいか判定します。

@param other 比較対象の数値
@return self と other が等しい場合 true を返します。
そうでなければ false を返します。

例:

1 == 2 # => false
1 == 1.0 # => true

Integer#>(other) -> bool (102.0)

比較演算子。数値として大きいか判定します。

比較演算子。数値として大きいか判定します。

@param other 比較対象の数値
@return self よりも other の方が小さい場合 true を返します。
そうでなければ false を返します。

例:

1 > 0 # => true
1 > 1 # => false

Integer#>=(other) -> bool (102.0)

比較演算子。数値として等しいまたは大きいか判定します。

比較演算子。数値として等しいまたは大きいか判定します。

@param other 比較対象の数値
@return self よりも other の方が小さい場合か、
両者が等しい場合 true を返します。
そうでなければ false を返します。

例:

1 >= 0 # => true
1 >= 1 # => true
1 >= 2 # => false

Integer#[](nth) -> Integer (102.0)

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。

@param nth 何ビット目を指すかの数値
@return 1 か 0

self[nth]=bit (つまりビットの修正) がないのは、Numeric 関連クラスが
immutable であるためです。

例:

a = 0b11001100101010
30.downto(0) do |n| print a[n] end
# => 0000000000000000011001100101010

a = 9**15
50.downto(0...

絞り込み条件を変える

Integer#^(other) -> Integer (102.0)

ビット二項演算子。排他的論理和を計算します。

ビット二項演算子。排他的論理和を計算します。

@param other 数値

例:

1 ^ 1 # => 0
2 ^ 3 # => 1

Integer#allbits?(mask) -> bool (102.0)

self & mask の全てのビットが 1 なら true を返します。

...mask ビットマスクを整数で指定します。

//emlist[][ruby]{
42.allbits?(42) # => true
0b1010_1010.allbits?(0b1000_0010) # => true
0b1010_1010.allbits?(0b1000_0001) # => false
0b1000_0010.allbits?(0b1010_1010) # => false
//}

@see Integer#anybits?
@see Integer#nobits?...

Integer#anybits? -> bool (102.0)

self & mask のいずれかのビットが 1 なら true を返します。

...m mask ビットマスクを整数で指定します。

//emlist[][ruby]{
42.anybits?(42) # => true
0b1010_1010.anybits?(0b1000_0010) # => true
0b1010_1010.anybits?(0b1000_0001) # => true
0b1000_0010.anybits?(0b0010_1100) # => false
//}

@see Integer#allbits?
@see Integer#nobits?...

Integer#ceil -> self (102.0)

self を返します。

self を返します。

例:

10.to_i # => 10

1.floor(2) # => 1.0
1.ceil(2) # => 1.0
1.round(2) # => 1.0
1.truncate(2) # => 1.0

Integer#div(other) -> Numeric (102.0)

算術演算子。商を計算します。

算術演算子。商を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

絞り込み条件を変える

Integer#divmod(other) -> [Integer, Numeric] (102.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

@param other self を割る数。

@see Numeric#divmod

Integer#downto(min) -> Enumerator (102.0)

self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。

...から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。

@param min 数値
@return self を返します。

例:

5.downto(1) {|i| print i, " " } # => 5 4 3 2 1

@see Integer#upto, Numeric#step, Integer#times...

Integer#downto(min) {|n| ... } -> self (102.0)

self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。

...から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。

@param min 数値
@return self を返します。

例:

5.downto(1) {|i| print i, " " } # => 5 4 3 2 1

@see Integer#upto, Numeric#step, Integer#times...

Integer#even? -> bool (102.0)

自身が偶数であれば真を返します。 そうでない場合は偽を返します。

自身が偶数であれば真を返します。
そうでない場合は偽を返します。

例:

10.even? # => true
5.even? # => false

Integer#fdiv(other) -> Numeric (102.0)

self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。

self を other で割った商を Float で返します。
ただし Complex が関わる場合は例外です。
その場合も成分は Float になります。

@param other self を割る数を指定します。

@see Numeric#quo

絞り込み条件を変える

Integer#floor -> self (102.0)

self を返します。

self を返します。

例:

10.to_i # => 10

1.floor(2) # => 1.0
1.ceil(2) # => 1.0
1.round(2) # => 1.0
1.truncate(2) # => 1.0

Integer#gcd(n) -> Integer (102.0)

自身と整数 n の最大公約数を返します。

...# => 1
3.gcd(-7) # => 1
((1<<31)-1).gcd((1<<61)-1) # => 1

また、self や n が 0 だった場合は、0 ではない方の整数の絶対値を返します。

3.gcd(0) # => 3
0.gcd(-7) # => 7

@see Integer#lcm, Integer#gcdlcm...
<< < 1 2 3 4 > >>