別のキーワード
クラス
- Array (1)
- BigDecimal (4)
- Complex (4)
-
Enumerator
:: Lazy (4) - Float (3)
- IO (6)
- Integer (9)
- Method (1)
- Object (4)
-
OpenSSL
:: BN (1) - Prime (2)
- Proc (1)
- Rational (2)
- String (5)
キーワード
- % (2)
-
1
. 6 . 8から1 . 8 . 0への変更点(まとめ) (1) - Lazy (1)
- Marshal フォーマット (1)
-
NEWS for Ruby 2
. 2 . 0 (1) -
NEWS for Ruby 2
. 7 . 0 (1) -
NEWS for Ruby 3
. 0 . 0 (1) - Numeric (1)
- Rubyで使われる記号の意味(正規表現の複雑な記号は除く) (1)
- [] (3)
- abs (1)
- abs2 (1)
- bigdecimal (1)
-
bit
_ length (1) - encode (3)
-
enum
_ for (2) -
fiddle
/ import (1) -
for
_ fd (1) - format (1)
- frexp (1)
- inject (3)
-
int
_ from _ prime _ division (1) - irb (1)
- lazy (1)
- load (1)
- log (2)
- log10 (1)
- magnitude (1)
-
max
_ by (4) -
mod
_ exp (1) - modulo (1)
- new (1)
- open (2)
- parameters (2)
-
parse
_ csv (1) - pow (2)
-
prime
_ division (2) - realtime (1)
- reduce (3)
- remainder (1)
- restore (1)
- round (2)
-
ruby 1
. 6 feature (1) -
ruby 1
. 9 feature (1) -
ruby
_ stack _ length (1) - split (1)
- sprintf (1)
- sprintf フォーマット (1)
- sqrt (1)
-
st
_ delete _ safe (1) - then (2)
- timeout (2)
-
to
_ csv (1) -
to
_ enum (2) -
to
_ f (1) -
to
_ h (2) - uniq (2)
- write (2)
-
yield
_ self (2) - クラス/メソッドの定義 (1)
- パターンマッチ (1)
- 演算子式 (1)
検索結果
先頭5件
-
void ruby
_ options(int argc , char **argv) (78649.0) -
argc と argv を ruby への コマンドラインオプションとして処理します。
argc と argv を ruby への
コマンドラインオプションとして処理します。 -
int ruby
_ stack _ length(VALUE **p) (78601.0) -
-
Integer
# **(other) -> Numeric (54445.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Rational
# **(other) -> Rational | Float (54391.0) -
冪(べき)乗を計算します。
冪(べき)乗を計算します。
@param other 自身を other 乗する数
other に Float を指定した場合は、計算結果を Float で返しま
す。other が有理数であっても、計算結果が無理数だった場合は Float
を返します。
//emlist[例][ruby]{
r = Rational(3, 4)
r ** Rational(2, 1) # => (9/16)
r ** 2 # => (9/16)
r ** 2.0 # => 0.5625
r ** Rational(1, 2) # => 0.866... -
Float
# **(other) -> Float (54373.0) -
算術演算子。冪を計算します。
...算術演算子。冪を計算します。
@param other 二項演算の右側の引数(対象)
//emlist[例][ruby]{
# 冪
1.2 ** 3.0 # => 1.7279999999999998
3.0 + 4.5 - 1.3 / 2.4 * 3 % 1.2 ** 3.0 # => 5.875
0.0 ** 0 # => 1.0
//}... -
Complex
# **(other) -> Complex (54337.0) -
冪(べき)乗を計算します。
冪(べき)乗を計算します。
@param other 自身を other 乗する数
//emlist[例][ruby]{
Complex('i') ** 2 # => (-1+0i)
//} -
ruby 1
. 6 feature (15430.0) -
ruby 1.6 feature ruby version 1.6 は安定版です。この版での変更はバグ修正がメイン になります。
ruby 1.6 feature
ruby version 1.6 は安定版です。この版での変更はバグ修正がメイン
になります。
((<stable-snapshot|URL:ftp://ftp.netlab.co.jp/pub/lang/ruby/stable-snapshot.tar.gz>)) は、日々更新される安定版の最新ソースです。
== 1.6.8 (2002-12-24) -> stable-snapshot
: 2003-01-22: errno
EAGAIN と EWOULDBLOCK が同じ値のシステムで、EWOULDBLOCK がなくなっ
ていま... -
ruby 1
. 9 feature (11560.0) -
ruby 1.9 feature ruby version 1.9.0 は開発版です。 以下にあげる機能は将来削除されたり互換性のない仕様変更がなされるかもしれません。 1.9.1 以降は安定版です。 バグ修正がメインになります。
ruby 1.9 feature
ruby version 1.9.0 は開発版です。
以下にあげる機能は将来削除されたり互換性のない仕様変更がなされるかもしれません。
1.9.1 以降は安定版です。
バグ修正がメインになります。
記号について(特に重要なものは大文字(主観))
* カテゴリ
* [ruby]: ruby インタプリタの変更
* [api]: 拡張ライブラリ API
* [lib]: ライブラリ
* [parser]: 文法の変更
* [regexp]: 正規表現の機能拡張
* [marshal]: Marshal ファイルのフォーマット変更
* ... -
NEWS for Ruby 2
. 7 . 0 (10594.0) -
NEWS for Ruby 2.7.0 このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
...に注意してください。
* パターンマッチに対する警告は「-W:no-experimental」オプションで抑制できます。
==== 3.0 に向けてのキーワード引数の仕様変更
* キーワード引数と位置引数の自動変換は自動変換が非推奨となりま......ンで止められます。
//emlist{
def foo
class << Object.new
yield #=> warning: `yield' in class syntax will not be supported from Ruby 3.0. 15575
end
end
foo { p :ok }
//}
* 引数を転送する記法「(...)」が導入されました。 16253
* foo の全ての引数(キー......//emlist[][ruby]{
def foo(...)
bar(...)
end
//}
* 「$SAFE」の参照や代入は警告が表示されるようになりました。
Ruby 3.0 で「$SAFE」は普通のグローバル変数になる予定です。 16131
* Object#taint,Object#untaint,Object#trust,Object#untrustと関連... -
NEWS for Ruby 3
. 0 . 0 (9586.0) -
NEWS for Ruby 3.0.0 このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
...NEWS for Ruby 3.0.0
このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
それぞれのエントリーは参照情報があるため短いです。
十分な情報と共に書かれた全ての変更のリス......eywords.
16166
//emlist[][ruby]{
pr = proc{|*a, **kw| [a, kw]}
pr.call([1])
# 2.7 => [[1], {}]
# 3.0 => [[[1]], {}]
pr.call([1, {a: 1}])
# 2.7 => [[1], {:a=>1}] # and deprecation warning
# 3.0 => a=>1}, {}]
//}
* Arguments forwarding (`...`) now supports leading arguments.
16378
//eml......7260
* `in` is changed to return `true` or `false`. 17371
//emlist{
0 => a
p a #=> 0
{b: 0, c: 1} => {b:}
p b #=> 0
//}
//emlist{
# version 3.0
0 in 1 #=> false
# version 2.7
0 in 1 #=> raise NoMatchingPatternError
//}
* Find-pattern is added. [EXPERIMENTAL]
16828
//emlist{
case [... -
Rubyで使われる記号の意味(正規表現の複雑な記号は除く) (9244.0)
-
Rubyで使われる記号の意味(正規表現の複雑な記号は除く) ex q num per and or plus minus ast slash hat sq period comma langl rangl eq tilde dollar at under lbrarbra lbra2rbra2 lbra3rbra3 dq colon ac backslash semicolon
Rubyで使われる記号の意味(正規表現の複雑な記号は除く)
ex q num per and or
plus minus ast slash hat sq
period comma langl rangl eq tilde
dollar at under lbrarbra
lbra2rbra2 lbra3rbra3 dq colon ac
backslash semicolon
===[a:ex] !
: !true
not 演算子。d:spec/operator#notを参照。
: 3 != 5
「等しくない」比較演算子。d:spec/operator#notを参... -
NEWS for Ruby 2
. 2 . 0 (9154.0) -
NEWS for Ruby 2.2.0 このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
NEWS for Ruby 2.2.0
このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
それぞれのエントリーは参照情報があるため短いです。
十分な情報と共に書かれた全ての変更のリストは ChangeLog ファイルか bugs.ruby-lang.org の issue を参照してください。
== 2.1.0 以降の変更
=== 言語仕様の変更
* nil/true/false
* nil/true/false はフリーズされました 8923
* Hash リテラル
* 後ろにコロンのあるシンボルをキーにしたと... -
Integer
# pow(other) -> Numeric (9145.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Integer
# pow(other , modulo) -> Integer (9145.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
1
. 6 . 8から1 . 8 . 0への変更点(まとめ) (4213.0) -
1.6.8から1.8.0への変更点(まとめ) * ((<1.6.8から1.8.0への変更点(まとめ)/インタプリタの変更>)) * ((<1.6.8から1.8.0への変更点(まとめ)/追加されたクラス/モジュール>)) * ((<1.6.8から1.8.0への変更点(まとめ)/追加されたメソッド>)) * ((<1.6.8から1.8.0への変更点(まとめ)/追加された定数>)) * ((<1.6.8から1.8.0への変更点(まとめ)/拡張されたクラス/メソッド(互換性のある変更)>)) * ((<1.6.8から1.8.0への変更点(まとめ)/変更されたクラス/メソッド(互換性のない変更)>)) * ((<1.6.8から1.8.0への変更点(まとめ)/文法の変更>)) * ((<1.6.8から1.8.0への変更点(まとめ)/正規表現>)) * ((<1.6.8から1.8.0への変更点(まとめ)/Marshal>)) * ((<1.6.8から1.8.0への変更点(まとめ)/Windows 対応>)) * ((<1.6.8から1.8.0への変更点(まとめ)/廃止された(される予定の)機能>)) * ((<1.6.8から1.8.0への変更点(まとめ)/ライブラリ>)) * ((<1.6.8から1.8.0への変更点(まとめ)/拡張ライブラリAPI>)) * ((<1.6.8から1.8.0への変更点(まとめ)/バグ修正>)) * ((<1.6.8から1.8.0への変更点(まとめ)/サポートプラットフォームの追加>))
1.6.8から1.8.0への変更点(まとめ)
* ((<1.6.8から1.8.0への変更点(まとめ)/インタプリタの変更>))
* ((<1.6.8から1.8.0への変更点(まとめ)/追加されたクラス/モジュール>))
* ((<1.6.8から1.8.0への変更点(まとめ)/追加されたメソッド>))
* ((<1.6.8から1.8.0への変更点(まとめ)/追加された定数>))
* ((<1.6.8から1.8.0への変更点(まとめ)/拡張されたクラス/メソッド(互換性のある変更)>))
* ((<1.6.8から1.8.0への変更点(まとめ)/変更されたクラス/メソッド(互換性のない変更)>))... -
クラス/メソッドの定義 (829.0)
-
クラス/メソッドの定義 * クラス/メソッドの定義: * class * singleton_class * module * method * operator * nest_method * eval_method * singleton_method * class_method * limit * 定義に関する操作: * alias * undef * defined
クラス/メソッドの定義
* クラス/メソッドの定義:
* class
* singleton_class
* module
* method
* operator
* nest_method
* eval_method
* singleton_method
* class_method
* limit
* 定義に関する操作:
* alias
* undef
* defined
===[a:class] クラス定義
//emlist[例][ruby]{
class Foo < S... -
パターンマッチ (811.0)
-
パターンマッチ * patterns * variable_binding * variable_pinning * matching_non_primitive_objects * guard_clauses * current_feature_status * pattern_syntax * some_undefined_behavior_examples
...by]{
case [1, 1]
in a, b unless b == a*2
"matched"
else
"not matched"
end
#=> "matched"
//}
===[a:current_feature_status] 機能の現状
Ruby 3.0 の時点では、1行パターンマッチ と Find パターンは 「実験的機能」 扱いです。1行パターンマッチ と Find パタ... -
Marshal フォーマット (757.0)
-
Marshal フォーマット フォーマットバージョン 4.8 を元に記述しています。
Marshal フォーマット
フォーマットバージョン 4.8 を元に記述しています。
=== nil, true, false
それぞれ、'0', 'T', 'F' になります。
//emlist[][ruby]{
p Marshal.dump(nil).unpack1("x2 a*") # => "0"
p Marshal.dump(true).unpack1("x2 a*") # => "T"
p Marshal.dump(false).unpack1("x2 a*") # => "F"
//}
Ruby 2.1 以前では、インスタンス変数を設定しても dump されません... -
String
# %(args) -> String (649.0) -
printf と同じ規則に従って args をフォーマットします。
printf と同じ規則に従って args をフォーマットします。
args が配列であれば Kernel.#sprintf(self, *args) と同じです。
それ以外の場合は Kernel.#sprintf(self, args) と同じです。
@param args フォーマットする値、もしくはその配列
@return フォーマットされた文字列
//emlist[例][ruby]{
p "i = %d" % 10 # => "i = 10"
p "i = %x" % 10 # => "i = a"
p "i = %o" % 10... -
int st
_ delete _ safe(register st _ table *table , register char **key , char **value , char *never) (649.0) -
st_delete と似ているが、その場ですぐに削除するのではなく never を 書きこんでおく。st_cleanup_safe() で本当に削除できる。 Ruby では never には Qundef を使う。
st_delete と似ているが、その場ですぐに削除するのではなく never を
書きこんでおく。st_cleanup_safe() で本当に削除できる。
Ruby では never には Qundef を使う。 -
irb (637.0)
-
irb は Interactive Ruby の略です。 irb を使うと、Ruby の式を標準入力から簡単に入力・実行することができます。
irb は Interactive Ruby の略です。
irb を使うと、Ruby の式を標準入力から簡単に入力・実行することができます。
=== irb の使い方
Ruby さえ知っていれば irb を使うのは簡単です。
irb コマンドを実行すると、以下のようなプロンプトが表れます。
$ irb
irb(main):001:0>
あとは Ruby の式を入力するだけで、その式が実行され、結果が表示されます。
irb(main):001:0> 1+2
3
irb(main):002:0> class Foo
irb(main):003:1> def f... -
Kernel
. # format(format , *arg) -> String (631.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
format 文字列を C 言語の sprintf と同じように解釈し、
引数をフォーマットした文字列を返します。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、s... -
Kernel
. # sprintf(format , *arg) -> String (631.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
format 文字列を C 言語の sprintf と同じように解釈し、
引数をフォーマットした文字列を返します。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、s... -
sprintf フォーマット (631.0)
-
sprintf フォーマット === sprintf フォーマット
sprintf フォーマット === sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、sprintf のすべての方言をサ
ポートしていないこと(%': 3桁区切り)などの違いがあります。
Ruby には整数の大きさに上限がないので、%b, %B, %o, %x, %X
に負の数を与えると (左側に無限に1が続くとみなせるので)
..f のような表示をします。絶対値に符号を付けた... -
演算子式 (541.0)
-
演算子式 * assign * selfassign * multiassign * range * range_cond * and * or * not * cond
演算子式
* assign
* selfassign
* multiassign
* range
* range_cond
* and
* or
* not
* cond
//emlist[例][ruby]{
1+2*3/4
//}
プログラミングの利便のために一部のメソッド呼び出しと制御構造は演算子形
式をとります。Rubyには以下にあげる演算子があります。
高い ::
[]
+(単項) ! ~
**
... -
String
# parse _ csv(**options) -> [String] (535.0) -
CSV.parse_line(self, options) と同様です。
...# => ["Matz", "Ruby"]
p "Matz|Ruby\r\n".parse_csv(col_sep: '|', row_sep: "\r\n") # => ["Matz", "Ruby"]
//}
Ruby 2.6 (CSV 3.0.2) から、次のオプションが使えるようになりました。
//emlist[][ruby]{
require 'csv'
p "1,,3\n".parse_csv... -
bigdecimal (523.0)
-
bigdecimal は浮動小数点数演算ライブラリです。 任意の精度で 10 進表現された浮動小数点数を扱えます。
...ない場合)。
除算は (a の最大有効桁数) + (b の最大有効桁数) 分の最大桁数を持つ c が生成されますが、
c = 1.0/3.0 のような計算で明らかなように、
c の最大精度を超えるところで計算が打ち切られる場合があります。
いずれ......頭 (最左) の数字からの桁数を指定できます。
//emlist[][ruby]{
require "bigdecimal"
p BigDecimal("2").div(3, 12).to_s(10) # 2.0 / 3.0
# => 0.6666666666 67e0
//}
: truncate, round, ceil, floor
これらのメソッドは小数点からの相対位置を指定して桁数を決... -
Array
# to _ csv(**options) -> String (391.0) -
CSV.generate_line(self, options) と同様です。
CSV.generate_line(self, options) と同様です。
Array オブジェクトを 1 行の CSV 文字列に変換するためのショートカットです。
@param options CSV.generate_line と同様のオプションを指定します。
//emlist[][ruby]{
require 'csv'
p [1, 'Matz', :Ruby, Date.new(1965, 4, 14)].to_csv # => "1,Matz,Ruby,1965-04-14\n"
p [1, 'Matz',... -
IO
. for _ fd(fd , mode = "r" , **opts) -> IO (367.0) -
オープン済みのファイルディスクリプタ fd に対する新しい IO オブジェクトを生成して返します。
オープン済みのファイルディスクリプタ fd に対する新しい
IO オブジェクトを生成して返します。
IO.open にブロックが与えられた場合、IO オブジェクトを生成しそれを引数としてブロックを
実行します。ブロックの終了とともに fd はクローズされます。ブロックの結果を返します。
IO.new, IO.for_fd はブロックを受け付けません。
=== キーワード引数
このメソッドは以下のキーワード引数を利用できます。
* :mode mode引数と同じ意味です
* :external_encoding 外部エンコーディング。"-" はデフォルト外部エンコーディングの
... -
IO
. new(fd , mode = "r" , **opts) -> IO (367.0) -
オープン済みのファイルディスクリプタ fd に対する新しい IO オブジェクトを生成して返します。
オープン済みのファイルディスクリプタ fd に対する新しい
IO オブジェクトを生成して返します。
IO.open にブロックが与えられた場合、IO オブジェクトを生成しそれを引数としてブロックを
実行します。ブロックの終了とともに fd はクローズされます。ブロックの結果を返します。
IO.new, IO.for_fd はブロックを受け付けません。
=== キーワード引数
このメソッドは以下のキーワード引数を利用できます。
* :mode mode引数と同じ意味です
* :external_encoding 外部エンコーディング。"-" はデフォルト外部エンコーディングの
... -
IO
. open(fd , mode = "r" , **opts) -> IO (367.0) -
オープン済みのファイルディスクリプタ fd に対する新しい IO オブジェクトを生成して返します。
オープン済みのファイルディスクリプタ fd に対する新しい
IO オブジェクトを生成して返します。
IO.open にブロックが与えられた場合、IO オブジェクトを生成しそれを引数としてブロックを
実行します。ブロックの終了とともに fd はクローズされます。ブロックの結果を返します。
IO.new, IO.for_fd はブロックを受け付けません。
=== キーワード引数
このメソッドは以下のキーワード引数を利用できます。
* :mode mode引数と同じ意味です
* :external_encoding 外部エンコーディング。"-" はデフォルト外部エンコーディングの
... -
IO
. open(fd , mode = "r" , **opts) {|io| . . . } -> object (367.0) -
オープン済みのファイルディスクリプタ fd に対する新しい IO オブジェクトを生成して返します。
オープン済みのファイルディスクリプタ fd に対する新しい
IO オブジェクトを生成して返します。
IO.open にブロックが与えられた場合、IO オブジェクトを生成しそれを引数としてブロックを
実行します。ブロックの終了とともに fd はクローズされます。ブロックの結果を返します。
IO.new, IO.for_fd はブロックを受け付けません。
=== キーワード引数
このメソッドは以下のキーワード引数を利用できます。
* :mode mode引数と同じ意味です
* :external_encoding 外部エンコーディング。"-" はデフォルト外部エンコーディングの
... -
IO
. write(path , string , **opts) -> Integer (325.0) -
path で指定されるファイルを開き、string を書き込み、 閉じます。
path で指定されるファイルを開き、string を書き込み、
閉じます。
Kernel.#open と同様 path の先頭が "|" ならば、"|" に続くコマンドを実行し、コマンドの出力を標準出力に書き込みます。
offset を指定するとその位置までシークします。
offset を指定しないと、書き込みの末尾でファイルを
切り捨てます。
キーワード引数はファイルを開くときに使われ、エンコーディングなどを指定することができます。
詳しくは IO.open を見てください。
@param path ファイル名文字列
@param string 書き込む文字列
@param of... -
IO
. write(path , string , offset=nil , **opts) -> Integer (325.0) -
path で指定されるファイルを開き、string を書き込み、 閉じます。
path で指定されるファイルを開き、string を書き込み、
閉じます。
Kernel.#open と同様 path の先頭が "|" ならば、"|" に続くコマンドを実行し、コマンドの出力を標準出力に書き込みます。
offset を指定するとその位置までシークします。
offset を指定しないと、書き込みの末尾でファイルを
切り捨てます。
キーワード引数はファイルを開くときに使われ、エンコーディングなどを指定することができます。
詳しくは IO.open を見てください。
@param path ファイル名文字列
@param string 書き込む文字列
@param of... -
String
# encode(**options) -> String (325.0) -
self を指定したエンコーディングに変換した文字列を作成して返します。引数 を2つ与えた場合、第二引数は変換元のエンコーディングを意味します。さもな くば self のエンコーディングが使われます。 無引数の場合は、Encoding.default_internal が nil でなければそれが変換先のエンコーディングになり、かつ :invalid => :replace と :undef => :replace が指定されたと見なされ、nil ならば変換は行われません。
self を指定したエンコーディングに変換した文字列を作成して返します。引数
を2つ与えた場合、第二引数は変換元のエンコーディングを意味します。さもな
くば self のエンコーディングが使われます。
無引数の場合は、Encoding.default_internal が nil でなければそれが変換先のエンコーディングになり、かつ :invalid => :replace と :undef => :replace が指定されたと見なされ、nil ならば変換は行われません。
@param encoding 変換先のエンコーディングを表す文字列か Encoding オブジェクトを... -
String
# encode(encoding , **options) -> String (325.0) -
self を指定したエンコーディングに変換した文字列を作成して返します。引数 を2つ与えた場合、第二引数は変換元のエンコーディングを意味します。さもな くば self のエンコーディングが使われます。 無引数の場合は、Encoding.default_internal が nil でなければそれが変換先のエンコーディングになり、かつ :invalid => :replace と :undef => :replace が指定されたと見なされ、nil ならば変換は行われません。
self を指定したエンコーディングに変換した文字列を作成して返します。引数
を2つ与えた場合、第二引数は変換元のエンコーディングを意味します。さもな
くば self のエンコーディングが使われます。
無引数の場合は、Encoding.default_internal が nil でなければそれが変換先のエンコーディングになり、かつ :invalid => :replace と :undef => :replace が指定されたと見なされ、nil ならば変換は行われません。
@param encoding 変換先のエンコーディングを表す文字列か Encoding オブジェクトを... -
String
# encode(encoding , from _ encoding , **options) -> String (325.0) -
self を指定したエンコーディングに変換した文字列を作成して返します。引数 を2つ与えた場合、第二引数は変換元のエンコーディングを意味します。さもな くば self のエンコーディングが使われます。 無引数の場合は、Encoding.default_internal が nil でなければそれが変換先のエンコーディングになり、かつ :invalid => :replace と :undef => :replace が指定されたと見なされ、nil ならば変換は行われません。
self を指定したエンコーディングに変換した文字列を作成して返します。引数
を2つ与えた場合、第二引数は変換元のエンコーディングを意味します。さもな
くば self のエンコーディングが使われます。
無引数の場合は、Encoding.default_internal が nil でなければそれが変換先のエンコーディングになり、かつ :invalid => :replace と :undef => :replace が指定されたと見なされ、nil ならば変換は行われません。
@param encoding 変換先のエンコーディングを表す文字列か Encoding オブジェクトを... -
Numeric (163.0)
-
数値を表す抽象クラスです。Integer や Float などの数値クラス は Numeric のサブクラスとして実装されています。
数値を表す抽象クラスです。Integer や Float などの数値クラス
は Numeric のサブクラスとして実装されています。
演算や比較を行うメソッド(+, -, *, /, <=>)は Numeric のサブクラスで定義されま
す。Numeric で定義されているメソッドは、サブクラスで提供されているメソッド
(+, -, *, /, %) を利用して定義されるものがほとんどです。
つまり Numeric で定義されているメソッドは、Numeric のサブクラスとして新たに数値クラスを定義した時に、
演算メソッド(+, -, *, /, %, <=>, coerce)だけを定義すれ... -
Timeout
. # timeout(sec , exception _ class = nil) {|i| . . . } -> object (163.0) -
ブロックを sec 秒の期限付きで実行します。 ブロックの実行時間が制限を過ぎたときは例外 Timeout::Error が発生します。
ブロックを sec 秒の期限付きで実行します。
ブロックの実行時間が制限を過ぎたときは例外
Timeout::Error が発生します。
exception_class を指定した場合には Timeout::Error の代わりに
その例外が発生します。
ブロックパラメータ i は sec がはいります。
また sec が 0 もしくは nil のときは制限時間なしで
ブロックを実行します。
@param sec タイムアウトする時間を秒数で指定します.
@param exception_class タイムアウトした時、発生させる例外を指定します.
@param message エラー... -
Timeout
. # timeout(sec , exception _ class , message) {|i| . . . } -> object (163.0) -
ブロックを sec 秒の期限付きで実行します。 ブロックの実行時間が制限を過ぎたときは例外 Timeout::Error が発生します。
ブロックを sec 秒の期限付きで実行します。
ブロックの実行時間が制限を過ぎたときは例外
Timeout::Error が発生します。
exception_class を指定した場合には Timeout::Error の代わりに
その例外が発生します。
ブロックパラメータ i は sec がはいります。
また sec が 0 もしくは nil のときは制限時間なしで
ブロックを実行します。
@param sec タイムアウトする時間を秒数で指定します.
@param exception_class タイムアウトした時、発生させる例外を指定します.
@param message エラー... -
Integer
# bit _ length -> Integer (145.0) -
self を表すのに必要なビット数を返します。
self を表すのに必要なビット数を返します。
「必要なビット数」とは符号ビットを除く最上位ビットの位置の事を意味しま
す。2**n の場合は n+1 になります。self にそのようなビットがない(0 や
-1 である)場合は 0 を返します。
//emlist[例: ceil(log2(int < 0 ? -int : int+1)) と同じ結果][ruby]{
(-2**12-1).bit_length # => 13
(-2**12).bit_length # => 12
(-2**12+1).bit_length # => 12
-0x101.bit... -
Enumerable
# lazy -> Enumerator :: Lazy (127.0) -
自身を lazy な Enumerator に変換したものを返します。
自身を lazy な Enumerator に変換したものを返します。
この Enumerator は、以下のメソッドが遅延評価を行う (つまり、配列ではな
くEnumeratorを返す) ように再定義されています。
* map/collect
* flat_map/collect_concat
* select/find_all
* reject
* grep
* take, take_while
* drop, drop_while
* zip (※一貫性のため、ブロックを渡さないケースのみlazy)
* cycle (※一貫性のため、ブロックを渡さないケースのみl... -
Integer
. sqrt(n) -> Integer (109.0) -
非負整数 n の整数の平方根を返します。すなわち n の平方根以下の 最大の非負整数を返します。
非負整数 n の整数の平方根を返します。すなわち n の平方根以下の
最大の非負整数を返します。
@param n 非負整数。Integer ではない場合は、最初に Integer に変換されます。
@raise Math::DomainError n が負の整数の時に発生します。
//emlist[][ruby]{
Integer.sqrt(0) # => 0
Integer.sqrt(1) # => 1
Integer.sqrt(24) # => 4
Integer.sqrt(25) # => 5
Integer.sqrt(10**... -
BigDecimal
# split -> [Integer , String , Integer , Integer] (103.0) -
BigDecimal 値を 0.xxxxxxx*10**n と表現したときに、 符号 (NaNのときは 0、それ以外は+1か-1になります)、 仮数部分の文字列("xxxxxxx")と、基数(10)、更に指数 n を配列で返します。
BigDecimal 値を 0.xxxxxxx*10**n と表現したときに、
符号 (NaNのときは 0、それ以外は+1か-1になります)、
仮数部分の文字列("xxxxxxx")と、基数(10)、更に指数 n を配列で返します。
//emlist[][ruby]{
require "bigdecimal"
a = BigDecimal("3.14159265")
f, x, y, z = a.split
//}
とすると、f = 1、x = "314159265"、y = 10、z = 1 になります。
従って、以下のようにする事で Float に変換することができます。
//em... -
Rational
# to _ f -> Float (91.0) -
自身の値を最も良く表現する Float に変換します。
自身の値を最も良く表現する Float に変換します。
絶対値が極端に小さい、または大きい場合にはゼロや無限大が返ることがあります。
@return Float を返します。
//emlist[例][ruby]{
Rational(2).to_f # => 2.0
Rational(9, 4).to_f # => 2.25
Rational(-3, 4).to_f # => -0.75
Rational(20, 3).to_f # => 6.666666666666667
Rational(1, 10**1000... -
Enumerable
# max _ by -> Enumerator (73.0) -
各要素を順番にブロックに渡して実行し、 その評価結果を <=> で比較して、 最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
各要素を順番にブロックに渡して実行し、
その評価結果を <=> で比較して、
最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
引数を指定しない形式では要素が存在しなければ nil を返します。
引数を指定する形式では、空の配列を返します。
該当する要素が複数存在する場合、どの要素を返すかは不定です。
Enumerable#max と Enumerable#max_by の
違いは Enumerable#sort と Enumerable#sort_by の違いと同じです。
ブロックを省略した場合は Enumerator を返します。
@par... -
Enumerable
# max _ by {|item| . . . } -> object | nil (73.0) -
各要素を順番にブロックに渡して実行し、 その評価結果を <=> で比較して、 最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
各要素を順番にブロックに渡して実行し、
その評価結果を <=> で比較して、
最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
引数を指定しない形式では要素が存在しなければ nil を返します。
引数を指定する形式では、空の配列を返します。
該当する要素が複数存在する場合、どの要素を返すかは不定です。
Enumerable#max と Enumerable#max_by の
違いは Enumerable#sort と Enumerable#sort_by の違いと同じです。
ブロックを省略した場合は Enumerator を返します。
@par... -
Enumerable
# max _ by(n) -> Enumerator (73.0) -
各要素を順番にブロックに渡して実行し、 その評価結果を <=> で比較して、 最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
各要素を順番にブロックに渡して実行し、
その評価結果を <=> で比較して、
最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
引数を指定しない形式では要素が存在しなければ nil を返します。
引数を指定する形式では、空の配列を返します。
該当する要素が複数存在する場合、どの要素を返すかは不定です。
Enumerable#max と Enumerable#max_by の
違いは Enumerable#sort と Enumerable#sort_by の違いと同じです。
ブロックを省略した場合は Enumerator を返します。
@par... -
Enumerable
# max _ by(n) {|item| . . . } -> Array (73.0) -
各要素を順番にブロックに渡して実行し、 その評価結果を <=> で比較して、 最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
各要素を順番にブロックに渡して実行し、
その評価結果を <=> で比較して、
最大であった値に対応する元の要素、もしくは最大の n 要素が降順で入った配列を返します。
引数を指定しない形式では要素が存在しなければ nil を返します。
引数を指定する形式では、空の配列を返します。
該当する要素が複数存在する場合、どの要素を返すかは不定です。
Enumerable#max と Enumerable#max_by の
違いは Enumerable#sort と Enumerable#sort_by の違いと同じです。
ブロックを省略した場合は Enumerator を返します。
@par... -
Integer
# [](nth) -> Integer (73.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1) と同じ
@return sel... -
Integer
# [](nth , len) -> Integer (73.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1) と同じ
@return sel... -
Integer
# [](range) -> Integer (73.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1) と同じ
@return sel... -
Object
# then -> Enumerator (73.0) -
self を引数としてブロックを評価し、ブロックの結果を返します。
self を引数としてブロックを評価し、ブロックの結果を返します。
//emlist[例][ruby]{
3.next.then {|x| x**x }.to_s # => "256"
"my string".yield_self {|s| s.upcase } # => "MY STRING"
//}
値をメソッドチェインのパイプラインに次々と渡すのは良い使い方です。
//emlist[メソッドチェインのパイプライン][ruby]{
require 'open-uri'
require 'json'
construct_url(arguments).
... -
Object
# then {|x| . . . } -> object (73.0) -
self を引数としてブロックを評価し、ブロックの結果を返します。
self を引数としてブロックを評価し、ブロックの結果を返します。
//emlist[例][ruby]{
3.next.then {|x| x**x }.to_s # => "256"
"my string".yield_self {|s| s.upcase } # => "MY STRING"
//}
値をメソッドチェインのパイプラインに次々と渡すのは良い使い方です。
//emlist[メソッドチェインのパイプライン][ruby]{
require 'open-uri'
require 'json'
construct_url(arguments).
... -
Object
# yield _ self -> Enumerator (73.0) -
self を引数としてブロックを評価し、ブロックの結果を返します。
self を引数としてブロックを評価し、ブロックの結果を返します。
//emlist[例][ruby]{
3.next.then {|x| x**x }.to_s # => "256"
"my string".yield_self {|s| s.upcase } # => "MY STRING"
//}
値をメソッドチェインのパイプラインに次々と渡すのは良い使い方です。
//emlist[メソッドチェインのパイプライン][ruby]{
require 'open-uri'
require 'json'
construct_url(arguments).
... -
Object
# yield _ self {|x| . . . } -> object (73.0) -
self を引数としてブロックを評価し、ブロックの結果を返します。
self を引数としてブロックを評価し、ブロックの結果を返します。
//emlist[例][ruby]{
3.next.then {|x| x**x }.to_s # => "256"
"my string".yield_self {|s| s.upcase } # => "MY STRING"
//}
値をメソッドチェインのパイプラインに次々と渡すのは良い使い方です。
//emlist[メソッドチェインのパイプライン][ruby]{
require 'open-uri'
require 'json'
construct_url(arguments).
... -
Prime
# int _ from _ prime _ division(pd) -> Integer (73.0) -
素因数分解された結果を元の数値に戻します。
素因数分解された結果を元の数値に戻します。
引数が [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]] のようであるとき、
結果は p_1**e_1 * p_2**e_2 * .... * p_n**e_n となります。
@param pd 整数のペアの配列を指定します。含まれているペアの第一要素は素因数を、
第二要素はその素因数の指数をあらわします。
//emlist[例][ruby]{
require 'prime'
Prime.int_from_prime_division([[2,2], [3,1]]) #=> 12
P... -
fiddle
/ import (73.0) -
fiddle ライブラリのための高レベルインターフェースを提供するライブラリです。
...。
require 'fiddle/import'
module M
extend Fiddle::Importer
dlload './libsum.so'
extern 'double sum(double*, int)'
end
p M.sum([2.0, 3.0, 4.0].pack('d*'), 3) #=> 9.0
また与えられた文字列の配列 s (長さlen)の各要素の最初の文字を buf にコピーする関数... -
OpenSSL
:: BN # mod _ exp(other , m) -> OpenSSL :: BN (67.0) -
(self ** other) % m を返します。
(self ** other) % m を返します。
//emlist[][ruby]{
require 'openssl'
OpenSSL::BN.new("7").mod_exp(OpenSSL::BN.new("3"), OpenSSL::BN.new("6")) # => 1
//}
@param other 指数
@param m 剰余を取る数
@raise OpenSSL::BNError 計算時エラー -
Complex
# abs -> Numeric (55.0) -
自身の絶対値を返します。
自身の絶対値を返します。
以下の計算の結果を Float オブジェクトで返します。
sqrt(self.real ** 2 + self.imag ** 2)
//emlist[例][ruby]{
Complex(1, 2).abs # => 2.23606797749979
Complex(3, 4).abs # => 5.0
Complex('1/2', '1/2').abs # => 0.7071067811865476
//}
@see Complex#abs2 -
Complex
# abs2 -> Numeric (55.0) -
自身の絶対値の 2 乗を返します。
自身の絶対値の 2 乗を返します。
以下の計算の結果を返します。
self.real ** 2 + self.imag ** 2
//emlist[例][ruby]{
Complex(1, 1).abs2 # => 2
Complex(1.0, 1.0).abs2 # => 2.0
Complex('1/2', '1/2').abs2 # => (1/2)
//}
@see Complex#abs -
Complex
# magnitude -> Numeric (55.0) -
自身の絶対値を返します。
自身の絶対値を返します。
以下の計算の結果を Float オブジェクトで返します。
sqrt(self.real ** 2 + self.imag ** 2)
//emlist[例][ruby]{
Complex(1, 2).abs # => 2.23606797749979
Complex(3, 4).abs # => 5.0
Complex('1/2', '1/2').abs # => 0.7071067811865476
//}
@see Complex#abs2 -
Enumerable
# inject(init = self . first) {|result , item| . . . } -> object (55.0) -
リストのたたみこみ演算を行います。
リストのたたみこみ演算を行います。
最初に初期値 init と self の最初の要素を引数にブロックを実行します。
2 回目以降のループでは、前のブロックの実行結果と
self の次の要素を引数に順次ブロックを実行します。
そうして最後の要素まで繰り返し、最後のブロックの実行結果を返します。
要素が存在しない場合は init を返します。
初期値 init を省略した場合は、
最初に先頭の要素と 2 番目の要素をブロックに渡します。
また要素が 1 つしかなければブロックを実行せずに最初の要素を返します。
要素がなければブロックを実行せずに nil を返します。
@param in... -
Enumerable
# inject(init , sym) -> object (55.0) -
リストのたたみこみ演算を行います。
リストのたたみこみ演算を行います。
最初に初期値 init と self の最初の要素を引数にブロックを実行します。
2 回目以降のループでは、前のブロックの実行結果と
self の次の要素を引数に順次ブロックを実行します。
そうして最後の要素まで繰り返し、最後のブロックの実行結果を返します。
要素が存在しない場合は init を返します。
初期値 init を省略した場合は、
最初に先頭の要素と 2 番目の要素をブロックに渡します。
また要素が 1 つしかなければブロックを実行せずに最初の要素を返します。
要素がなければブロックを実行せずに nil を返します。
@param in... -
Enumerable
# inject(sym) -> object (55.0) -
リストのたたみこみ演算を行います。
リストのたたみこみ演算を行います。
最初に初期値 init と self の最初の要素を引数にブロックを実行します。
2 回目以降のループでは、前のブロックの実行結果と
self の次の要素を引数に順次ブロックを実行します。
そうして最後の要素まで繰り返し、最後のブロックの実行結果を返します。
要素が存在しない場合は init を返します。
初期値 init を省略した場合は、
最初に先頭の要素と 2 番目の要素をブロックに渡します。
また要素が 1 つしかなければブロックを実行せずに最初の要素を返します。
要素がなければブロックを実行せずに nil を返します。
@param in... -
Enumerable
# reduce(init = self . first) {|result , item| . . . } -> object (55.0) -
リストのたたみこみ演算を行います。
リストのたたみこみ演算を行います。
最初に初期値 init と self の最初の要素を引数にブロックを実行します。
2 回目以降のループでは、前のブロックの実行結果と
self の次の要素を引数に順次ブロックを実行します。
そうして最後の要素まで繰り返し、最後のブロックの実行結果を返します。
要素が存在しない場合は init を返します。
初期値 init を省略した場合は、
最初に先頭の要素と 2 番目の要素をブロックに渡します。
また要素が 1 つしかなければブロックを実行せずに最初の要素を返します。
要素がなければブロックを実行せずに nil を返します。
@param in... -
Enumerable
# reduce(init , sym) -> object (55.0) -
リストのたたみこみ演算を行います。
リストのたたみこみ演算を行います。
最初に初期値 init と self の最初の要素を引数にブロックを実行します。
2 回目以降のループでは、前のブロックの実行結果と
self の次の要素を引数に順次ブロックを実行します。
そうして最後の要素まで繰り返し、最後のブロックの実行結果を返します。
要素が存在しない場合は init を返します。
初期値 init を省略した場合は、
最初に先頭の要素と 2 番目の要素をブロックに渡します。
また要素が 1 つしかなければブロックを実行せずに最初の要素を返します。
要素がなければブロックを実行せずに nil を返します。
@param in... -
Enumerable
# reduce(sym) -> object (55.0) -
リストのたたみこみ演算を行います。
リストのたたみこみ演算を行います。
最初に初期値 init と self の最初の要素を引数にブロックを実行します。
2 回目以降のループでは、前のブロックの実行結果と
self の次の要素を引数に順次ブロックを実行します。
そうして最後の要素まで繰り返し、最後のブロックの実行結果を返します。
要素が存在しない場合は init を返します。
初期値 init を省略した場合は、
最初に先頭の要素と 2 番目の要素をブロックに渡します。
また要素が 1 つしかなければブロックを実行せずに最初の要素を返します。
要素がなければブロックを実行せずに nil を返します。
@param in... -
Enumerable
# to _ h(*args) -> Hash (55.0) -
self を [key, value] のペアの配列として解析した結果を Hash にして 返します。
self を [key, value] のペアの配列として解析した結果を Hash にして
返します。
@param args each の呼び出し時に引数として渡されます。
//emlist[例][ruby]{
%i[hello world].each_with_index.to_h # => {:hello => 0, :world => 1}
//}
ブロックを指定すると各要素でブロックを呼び出し、
その結果をペアとして使います。
//emlist[ブロック付きの例][ruby]{
(1..5).to_h {|x| [x, x ** 2]} # => {1=>1, 2=>4, ... -
Enumerable
# to _ h(*args) { . . . } -> Hash (55.0) -
self を [key, value] のペアの配列として解析した結果を Hash にして 返します。
self を [key, value] のペアの配列として解析した結果を Hash にして
返します。
@param args each の呼び出し時に引数として渡されます。
//emlist[例][ruby]{
%i[hello world].each_with_index.to_h # => {:hello => 0, :world => 1}
//}
ブロックを指定すると各要素でブロックを呼び出し、
その結果をペアとして使います。
//emlist[ブロック付きの例][ruby]{
(1..5).to_h {|x| [x, x ** 2]} # => {1=>1, 2=>4, ... -
Enumerator
:: Lazy # enum _ for(method = :each , *args) -> Enumerator :: Lazy (55.0) -
Object#to_enum と同じですが、Enumerator::Lazy を返します。
Object#to_enum と同じですが、Enumerator::Lazy を返します。
to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。
//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ... -
Enumerator
:: Lazy # enum _ for(method = :each , *args) {|*args| block} -> Enumerator :: Lazy (55.0) -
Object#to_enum と同じですが、Enumerator::Lazy を返します。
Object#to_enum と同じですが、Enumerator::Lazy を返します。
to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。
//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ... -
Enumerator
:: Lazy # to _ enum(method = :each , *args) -> Enumerator :: Lazy (55.0) -
Object#to_enum と同じですが、Enumerator::Lazy を返します。
Object#to_enum と同じですが、Enumerator::Lazy を返します。
to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。
//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ... -
Enumerator
:: Lazy # to _ enum(method = :each , *args) {|*args| block} -> Enumerator :: Lazy (55.0) -
Object#to_enum と同じですが、Enumerator::Lazy を返します。
Object#to_enum と同じですが、Enumerator::Lazy を返します。
to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。
//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ... -
Method
# parameters -> [object] (55.0) -
Method オブジェクトの引数の情報を返します。
Method オブジェクトの引数の情報を返します。
Method オブジェクトが引数を取らなければ空の配列を返します。引数を取る場合は、配列の配列を返し、
各配列の要素は引数の種類に応じた以下のような Symbol と、仮引数の名前を表す Symbol の 2 要素です。
組み込みのメソッドでは、仮引数の名前が取れません。
: :req
必須の引数
: :opt
デフォルト値が指定されたオプショナルな引数
: :rest
* で指定された残りすべての引数
: :keyreq
必須のキーワード引数
: :key
デフォルト値が指定されたオプショナルなキーワード引数
: :keyre... -
Proc
# parameters -> [object] (55.0) -
Proc オブジェクトの引数の情報を返します。
Proc オブジェクトの引数の情報を返します。
Proc オブジェクトが引数を取らなければ空の配列を返します。引数を取る場合は、配列の配列を返し、
各配列の要素は引数の種類に対応した以下のような Symbol と、引数名を表す Symbol の 2 要素です。
: :req
必須の引数
: :opt
デフォルト値が指定されたオプショナルな引数
: :rest
* で指定された残りすべての引数
: :keyreq
必須のキーワード引数
: :key
デフォルト値が指定されたオプショナルなキーワード引数
: :keyrest
** で指定された残りのキーワード引数
: :block... -
Benchmark
. # realtime { . . . } -> Float (37.0) -
与えられたブロックを評価して実行時間を計測して返します。 返り値の単位は、秒です。
与えられたブロックを評価して実行時間を計測して返します。
返り値の単位は、秒です。
//emlist[][ruby]{
require 'benchmark'
puts Benchmark.realtime { [0] * (10**8) } # => 1.0929416846483946
//} -
BigDecimal
# %(n) -> BigDecimal (37.0) -
self を n で割った余りを返します。
self を n で割った余りを返します。
@param n self を割る数を指定します。
//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
( x % 3).to_i # => 1
(-x % 3).to_i # => 2
( x % -3).to_i # => -2
(-x % -3).to_i # => -1
//}
戻り値は n と同じ符号になります。これは BigDecimal#remainder とは
異なる点に注意してください。詳細は Numeric#%、
Numeric#re... -
BigDecimal
# modulo(n) -> BigDecimal (37.0) -
self を n で割った余りを返します。
self を n で割った余りを返します。
@param n self を割る数を指定します。
//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
( x % 3).to_i # => 1
(-x % 3).to_i # => 2
( x % -3).to_i # => -2
(-x % -3).to_i # => -1
//}
戻り値は n と同じ符号になります。これは BigDecimal#remainder とは
異なる点に注意してください。詳細は Numeric#%、
Numeric#re... -
BigDecimal
# remainder(n) -> BigDecimal (37.0) -
self を n で割った余りを返します。
self を n で割った余りを返します。
@param n self を割る数を指定します。
//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
x.remainder(3).to_i # => 1
(-x).remainder(3).to_i # => -1
x.remainder(-3).to_i # => 1
(-x).remainder(-3).to_i # => -1
//}
戻り値は self と同じ符号になります。これは BigDecimal#% とは異な
る点に注意し... -
Enumerable
# uniq -> Array (37.0) -
self から重複した値を取り除いた配列を返します。
self から重複した値を取り除いた配列を返します。
ブロックが与えられた場合、ブロックが返した値が重複した要素を取り除いた
配列を返します。
//emlist[例][ruby]{
olympics = {
1896 => 'Athens',
1900 => 'Paris',
1904 => 'Chicago',
1906 => 'Athens',
1908 => 'Rome',
}
olympics.uniq{|k,v| v} # => [[1896, "Athens"], [1900, "Paris"], [1904, "Chicago"], [1908, "Ro... -
Enumerable
# uniq { |item| . . . } -> Array (37.0) -
self から重複した値を取り除いた配列を返します。
self から重複した値を取り除いた配列を返します。
ブロックが与えられた場合、ブロックが返した値が重複した要素を取り除いた
配列を返します。
//emlist[例][ruby]{
olympics = {
1896 => 'Athens',
1900 => 'Paris',
1904 => 'Chicago',
1906 => 'Athens',
1908 => 'Rome',
}
olympics.uniq{|k,v| v} # => [[1896, "Athens"], [1900, "Paris"], [1904, "Chicago"], [1908, "Ro... -
Enumerator
:: Lazy (37.0) -
map や select などのメソッドの遅延評価版を提供するためのクラス。
map や select などのメソッドの遅延評価版を提供するためのクラス。
動作は通常の Enumerator と同じですが、以下のメソッドが遅延評価を行う
(つまり、配列ではなく Enumerator を返す) ように再定義されています。
* map/collect
* flat_map/collect_concat
* filter_map
* select/find_all
* reject
* grep, grep_v
* take, take_while
* drop, drop_while
* slice_before, slice_after, slice... -
Float
# round(ndigits = 0) -> Integer | Float (37.0) -
自身ともっとも近い整数もしくは実数を返します。
自身ともっとも近い整数もしくは実数を返します。
中央値 0.5, -0.5 はそれぞれ 1,-1 に切り上げされます。
いわゆる四捨五入ですが、偶数丸めではありません。
@param ndigits 丸める位を指定します。
ndigitsが0ならば、小数点以下を四捨五入し、整数を返します。
ndigitsが0より大きいならば、小数点以下の指定された位で四捨五入されます。
ndigitsが0より小さいならば、小数点以上の指定された位で四捨五入されます。
@param half ちょうど半分の値の丸め方を指定します。
サポートされている... -
Float
# round(ndigits = 0 , half: :up) -> Integer | Float (37.0) -
自身ともっとも近い整数もしくは実数を返します。
自身ともっとも近い整数もしくは実数を返します。
中央値 0.5, -0.5 はそれぞれ 1,-1 に切り上げされます。
いわゆる四捨五入ですが、偶数丸めではありません。
@param ndigits 丸める位を指定します。
ndigitsが0ならば、小数点以下を四捨五入し、整数を返します。
ndigitsが0より大きいならば、小数点以下の指定された位で四捨五入されます。
ndigitsが0より小さいならば、小数点以上の指定された位で四捨五入されます。
@param half ちょうど半分の値の丸め方を指定します。
サポートされている... -
Integer
# prime _ division(generator = Prime :: Generator23 . new) -> [[Integer , Integer]] (37.0) -
自身を素因数分解した結果を返します。
自身を素因数分解した結果を返します。
@param generator 素数生成器のインスタンスを指定します。
@return 素因数とその指数から成るペアを要素とする配列です。つまり、戻り値の各要素は2要素の配列 [n,e] であり、それぞれの内部配列の第1要素 n は self の素因数、第2要素は n**e が self を割り切る最大の自然数 e です。
@raise ZeroDivisionError self がゼロである場合に発生します。
@see Prime#prime_division
//emlist[例][ruby]{
require 'prime'
12.p... -
Marshal
. # load(port , proc = nil) -> object (37.0) -
port からマーシャルデータを読み込んで、元のオブジェクトと同 じ状態をもつオブジェクトを生成します。
port からマーシャルデータを読み込んで、元のオブジェクトと同
じ状態をもつオブジェクトを生成します。
proc として手続きオブジェクトが与えられた場合には読み込んだ
オブジェクトを引数にその手続きを呼び出します。
//emlist[例][ruby]{
str = Marshal.dump(["a", 1, 10 ** 10, 1.0, :foo])
p Marshal.load(str, proc {|obj| p obj})
# => "a"
# 1
# 10000000000
# 1.0
# :foo
# ["a", 1, 10000000000... -
Marshal
. # restore(port , proc = nil) -> object (37.0) -
port からマーシャルデータを読み込んで、元のオブジェクトと同 じ状態をもつオブジェクトを生成します。
port からマーシャルデータを読み込んで、元のオブジェクトと同
じ状態をもつオブジェクトを生成します。
proc として手続きオブジェクトが与えられた場合には読み込んだ
オブジェクトを引数にその手続きを呼び出します。
//emlist[例][ruby]{
str = Marshal.dump(["a", 1, 10 ** 10, 1.0, :foo])
p Marshal.load(str, proc {|obj| p obj})
# => "a"
# 1
# 10000000000
# 1.0
# :foo
# ["a", 1, 10000000000... -
Math
. # frexp(x) -> [Float , Integer] (37.0) -
実数 x の仮数部と指数部の配列を返します。
実数 x の仮数部と指数部の配列を返します。
@param x 実数
@raise TypeError x に数値以外を指定した場合に発生します。
@raise RangeError x に実数以外の数値を指定した場合に発生します。
//emlist[例][ruby]{
fraction, exponent = Math.frexp(1234) # => [0.6025390625, 11]
fraction * 2**exponent # => 1234.0
//} -
Math
. # log(x) -> Float (37.0) -
x の対数(logarithm)を返します。
...らかに負の数を指定した場合に発生します。
//emlist[例][ruby]{
Math.log(0) # => -Infinity
Math.log(1) # => 0.0
Math.log(Math::E) # => 1.0
Math.log(Math::E**3) # => 3.0
Math.log(12, 3) # => 2.2618595071429146
//}
@see Math.#log2, Math.#log10, Math.#exp... -
Math
. # log(x , b) -> Float (37.0) -
x の対数(logarithm)を返します。
...らかに負の数を指定した場合に発生します。
//emlist[例][ruby]{
Math.log(0) # => -Infinity
Math.log(1) # => 0.0
Math.log(Math::E) # => 1.0
Math.log(Math::E**3) # => 3.0
Math.log(12, 3) # => 2.2618595071429146
//}
@see Math.#log2, Math.#log10, Math.#exp... -
Math
. # log10(x) -> Float (37.0) -
x の常用対数(common logarithm)を返します。
x の常用対数(common logarithm)を返します。
@param x 正の実数
@raise TypeError xに数値以外を指定した場合に発生します。
@raise Math::DomainError x に範囲外の実数を指定した場合に発生します。
@raise RangeError xに実数以外の数値を指定した場合に発生します。
//emlist[例][ruby]{
Math.log10(1) # => 0.0
Math.log10(10) # => 1.0
Math.log10(10**100) # => 100.0
//}
@see M... -
Prime
# prime _ division(value , generator= Prime :: Generator23 . new) -> [[Integer , Integer]] (37.0) -
与えられた整数を素因数分解します。
与えられた整数を素因数分解します。
@param value 素因数分解する任意の整数を指定します。
@param generator 素数生成器のインスタンスを指定します。
@return 素因数とその指数から成るペアを要素とする配列です。つまり、戻り値の各要素は2要素の配列 [n,e] であり、それぞれの内部配列の第1要素 n は value の素因数、第2要素は n**e が value を割り切る最大の自然数 e です。
@raise ZeroDivisionError 与えられた数値がゼロである場合に発生します。
//emlist[例][ruby]{
require 'p...