るりまサーチ (Ruby 2.4.0)

最速Rubyリファレンスマニュアル検索!
310件ヒット [101-200件を表示] (0.040秒)
トップページ > バージョン:2.4.0[x] > クエリ:ArgumentError[x]

別のキーワード

  1. _builtin argumenterror
  2. on argumenterror
  3. new argumenterror
  4. dump argumenterror
  5. parse argumenterror

モジュール

オブジェクト

キーワード

検索結果

<< < 1 2 3 4 > >>

BigMath.#sin(x, prec) -> BigDecimal (19.0)

x の正弦関数を prec で指定した精度で計算します。単位はラジアンです。x に無限大や NaN を指定した場合には NaN を返します。

x の正弦関数を prec で指定した精度で計算します。単位はラジアンです。x
に無限大や NaN を指定した場合には NaN を返します。

@param x 計算対象の BigDecimal オブジェクト。単位はラジアン。

@param prec 計算結果の精度。

@raise ArgumentError prec に 0 以下が指定された場合に発生します。

//emlist[][ruby]{
require "bigdecimal/math"

puts BigMath::sin(BigDecimal('0.5'), 10) #=> 0.479425538604203000273...

BigMath.#sqrt(x, prec) -> BigDecimal (19.0)

x の平方根を prec で指定した精度で計算します。

x の平方根を prec で指定した精度で計算します。

@param x 平方根を求める数。

@param prec 計算結果の精度。

@raise FloatDomainError x に 0 以下、もしくは NaN が指定された場合に発生します。

@raise ArgumentError prec に 0 未満が指定された場合に発生します。

//emlist[][ruby]{
require "bigdecimal/math"

puts BigMath::sqrt(BigDecimal('2'), 10) #=> 0.1414213562373095048666666667e...

CGI::Session.new(request, option = {}) -> CGI::Session (19.0)

セッションオブジェクトを新しく作成し返します。

セッションオブジェクトを新しく作成し返します。

@param request CGI のインスタンスを指定します。

@param option ハッシュを指定することができます。

以下の文字列が option のキーとして認識されます。

: session_key
クッキーと <FORM type=hidden> の name として使われます。
(default: "_session_id")

: session_id
セッション ID として使われます。
デフォルトのデータベースである FileStore を用いる場合,
値は英数字だけからなる文字列で無けれ...

Comparable#<(other) -> bool (19.0)

比較演算子 <=> をもとにオブジェクト同士を比較します。 <=> が負の整数を返した場合に、true を返します。 それ以外の整数を返した場合に、false を返します。

比較演算子 <=> をもとにオブジェクト同士を比較します。
<=> が負の整数を返した場合に、true を返します。
それ以外の整数を返した場合に、false を返します。

@param other 自身と比較したいオブジェクトを指定します。
@raise ArgumentError <=> が nil を返したときに発生します。

//emlist[例][ruby]{
1 < 1 # => false
1 < 2 # => true
//}

Comparable#<=(other) -> bool (19.0)

比較演算子 <=> をもとにオブジェクト同士を比較します。 <=> が負の整数か 0 を返した場合に、true を返します。 それ以外の整数を返した場合に、false を返します。

比較演算子 <=> をもとにオブジェクト同士を比較します。
<=> が負の整数か 0 を返した場合に、true を返します。
それ以外の整数を返した場合に、false を返します。

@param other 自身と比較したいオブジェクトを指定します。
@raise ArgumentError <=> が nil を返したときに発生します。

//emlist[例][ruby]{
1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true
//}

絞り込み条件を変える

Comparable#>(other) -> bool (19.0)

比較演算子 <=> をもとにオブジェクト同士を比較します。 <=> が正の整数を返した場合に、true を返します。 それ以外の整数を返した場合に、false を返します。

比較演算子 <=> をもとにオブジェクト同士を比較します。
<=> が正の整数を返した場合に、true を返します。
それ以外の整数を返した場合に、false を返します。

@param other 自身と比較したいオブジェクトを指定します。
@raise ArgumentError <=> が nil を返したときに発生します。

//emlist[例][ruby]{
1 > 0 # => true
1 > 1 # => false
//}

Comparable#>=(other) -> bool (19.0)

比較演算子 <=> をもとにオブジェクト同士を比較します。 <=> が正の整数か 0 を返した場合に、true を返します。 それ以外の整数を返した場合に、false を返します。

比較演算子 <=> をもとにオブジェクト同士を比較します。
<=> が正の整数か 0 を返した場合に、true を返します。
それ以外の整数を返した場合に、false を返します。

@param other 自身と比較したいオブジェクトを指定します。
@raise ArgumentError <=> が nil を返したときに発生します。

//emlist[例][ruby]{
1 >= 0 # => true
1 >= 1 # => true
1 >= 2 # => false
//}

Comparable#between?(min, max) -> bool (19.0)

比較演算子 <=> をもとに self が min と max の範囲内(min, max を含みます)にあるかを判断します。

比較演算子 <=> をもとに self が min と max の範囲内(min, max
を含みます)にあるかを判断します。

以下のコードと同じです。
//emlist[][ruby]{
self >= min and self <= max
//}

@param min 範囲の下端を表すオブジェクトを指定します。

@param max 範囲の上端を表すオブジェクトを指定します。

@raise ArgumentError self <=> min か、self <=> max が nil を返
したときに発生します。

//emlist[例...

Date.civil(year = -4712, mon = 1, mday = 1, start = Date::ITALY) -> Date (19.0)

暦日付に相当する日付オブジェクトを生成します。

暦日付に相当する日付オブジェクトを生成します。

このクラスでは、紀元前の年を天文学の流儀で勘定します。
1年の前は零年、零年の前は-1年、のようにします。
月、および月の日は負、
または正の数でなければなりません (負のときは最後からの序数)。
零であってはなりません。

最後の引数は、グレゴリオ暦をつかい始めた日をあらわすユリウス日です。
省略した場合は、Date::ITALY (1582年10月15日) になります。

Date.jd も参照してください。

@param year 年
@param mon 月
@param mday 日
@param start グレゴリオ暦をつかい始...

Date.commercial(cwyear = -4712, cweek = 1, cwday = 1, start = Date::ITALY) -> Date (19.0)

暦週日付に相当する日付オブジェクトを生成します。

暦週日付に相当する日付オブジェクトを生成します。

週、および週の日 (曜日) は負、
または正の数でなければなりません(負のときは最後からの序数)。
零であってはなりません。

このメソッドに改暦前の日付を与えることはできません。

Date.jd、および Date.new も参照してください。

@param cwyear 年
@param cweek 週
@param cwday 週の日 (曜日)
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日付になる組み合わせである場合に発生します。

絞り込み条件を変える

Date.new(year = -4712, mon = 1, mday = 1, start = Date::ITALY) -> Date (19.0)

暦日付に相当する日付オブジェクトを生成します。

暦日付に相当する日付オブジェクトを生成します。

このクラスでは、紀元前の年を天文学の流儀で勘定します。
1年の前は零年、零年の前は-1年、のようにします。
月、および月の日は負、
または正の数でなければなりません (負のときは最後からの序数)。
零であってはなりません。

最後の引数は、グレゴリオ暦をつかい始めた日をあらわすユリウス日です。
省略した場合は、Date::ITALY (1582年10月15日) になります。

Date.jd も参照してください。

@param year 年
@param mon 月
@param mday 日
@param start グレゴリオ暦をつかい始...

Date.ordinal(year = -4712, yday = 1, start = Date::ITALY) -> Date (19.0)

年間通算日 (年日付) に相当する日付オブジェクトを生成します。

年間通算日 (年日付) に相当する日付オブジェクトを生成します。

年の日は負、
または正の数でなければなりません (負のときは最後からの序数)。
零であってはなりません。

Date.jd、および Date.new も参照してください。

@param year 年
@param yday 年の日
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日付になる組み合わせである場合に発生します。

Date.parse(str = &#39;-4712-01-01&#39;, complete = true, start = Date::ITALY) -> Date (19.0)

与えられた日付表現を解析し、 その情報に基づいて日付オブジェクトを生成します。

与えられた日付表現を解析し、
その情報に基づいて日付オブジェクトを生成します。

年が "00" から "99" の範囲であれば、
年の下2桁表現であるとみなしこれを補います。
この振舞いを抑止したい場合は、ヒントとして、complete に false を与えます。

Date._parse も参照してください。

@param str 日付をあらわす文字列
@param complete 年を補完するか
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日付になる組み合わせである場合に発生します。

Date.strptime(str = &#39;-4712-01-01&#39;, format = &#39;%F&#39;, start = Date::ITALY) -> Date (19.0)

与えられた雛型で日付表現を解析し、 その情報に基づいて日付オブジェクトを生成します。

与えられた雛型で日付表現を解析し、
その情報に基づいて日付オブジェクトを生成します。

Date._strptime も参照してください。
また strptime(3)、および Date#strftime も参照してください。

@param str 日付をあらわす文字列
@param format 書式
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日付になる組み合わせである場合に発生します。

DateTime.civil(year = -4712, mon = 1, mday = 1, hour = 0, min = 0, sec = 0, offset = 0, start = Date::ITALY) -> DateTime (19.0)

暦日付に相当する日時オブジェクトを生成します。

暦日付に相当する日時オブジェクトを生成します。

時差の単位は日です。
1.8.6 以降では、"+0900" のような時差をあらわす文字列もつかえます。

@param year 年
@param mon 月
@param mday 日
@param hour 時
@param min 分
@param sec 秒
@param offset 時差
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時

絞り込み条件を変える

DateTime.commercial(cwyear = -4712, cweek = 1, cwday = 1, hour = 0, min = 0, sec = 0, offset = 0, start = Date::ITALY) -> DateTime (19.0)

暦週日付に相当する日時オブジェクトを生成します。

暦週日付に相当する日時オブジェクトを生成します。

DateTime.new も参照してください。

@param cwyear 年
@param cweek 週
@param cwday 週の日 (曜日)
@param hour 時
@param min 分
@param sec 秒
@param offset 時差
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時

DateTime.jd(jd = 0, hour = 0, min = 0, sec = 0, offset = 0, start = Date::ITALY) -> DateTime (19.0)

ユリウス日に相当する日時オブジェクトを生成します。

ユリウス日に相当する日時オブジェクトを生成します。

DateTime.new も参照してください。

@param jd ユリウス日
@param hour 時
@param min 分
@param sec 秒
@param offset 時差
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時

DateTime.new(year = -4712, mon = 1, mday = 1, hour = 0, min = 0, sec = 0, offset = 0, start = Date::ITALY) -> DateTime (19.0)

暦日付に相当する日時オブジェクトを生成します。

暦日付に相当する日時オブジェクトを生成します。

時差の単位は日です。
1.8.6 以降では、"+0900" のような時差をあらわす文字列もつかえます。

@param year 年
@param mon 月
@param mday 日
@param hour 時
@param min 分
@param sec 秒
@param offset 時差
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時

DateTime.ordinal(year = -4712, yday = 1, hour = 0, min = 0, sec = 0, offset = 0, start = Date::ITALY) -> DateTime (19.0)

年日付に相当する日時オブジェクトを生成します。

年日付に相当する日時オブジェクトを生成します。

DateTime.new も参照してください。

@param year 年
@param yday 年の日
@param hour 時
@param min 分
@param sec 秒
@param offset 時差
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時

DateTime.parse(str = &#39;-4712-01-01T00:00:00+00:00&#39;, complete = true, start = Date::ITALY) -> DateTime (19.0)

与えられた日時表現を解析し、 その情報に基づいて DateTime オブジェクトを生成します。

与えられた日時表現を解析し、
その情報に基づいて DateTime オブジェクトを生成します。

年が "00" から "99" の範囲であれば、
年の下2桁表現であるとみなしこれを補います。
この振舞いを抑止したい場合は、ヒントとして、complete に false を与えます。

@param str 日時をあらわす文字列
@param complete 年を補完するか
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時になる組み合わせである場合に発生します。

例:

require 'date'
...

絞り込み条件を変える

DateTime.strptime(str = &#39;-4712-01-01T00:00:00+00:00&#39;, format = &#39;%FT%T%z&#39;, start = Date::ITALY) -> DateTime (19.0)

与えられた雛型で日時表現を解析し、 その情報に基づいて DateTime オブジェクトを生成します。

与えられた雛型で日時表現を解析し、
その情報に基づいて DateTime オブジェクトを生成します。

@param str 日時をあらわす文字列
@param format 書式
@param start グレゴリオ暦をつかい始めた日をあらわすユリウス日
@raise ArgumentError 正しくない日時になる組み合わせである場合に発生します。

例:

require 'date'
DateTime.strptime('2001-02-03T12:13:14Z').to_s
# => "2001-02-03T12:13:14+00:00"

@see Date.strp...

Digest::SHA2.new(bitlen = 256) -> Digest::SHA2 (19.0)

与えられた bitlen に対応する SHA2 ハッシュを生成するためのオブジェクト を内部で設定して自身を初期化します。

与えられた bitlen に対応する SHA2 ハッシュを生成するためのオブジェクト
を内部で設定して自身を初期化します。

@param bitlen ハッシュの長さを指定します。256, 384, 512 が指定可能です。

@raise ArgumentError bitlen に 256, 384, 512 以外の値を指定した場合に発生します。

Dir.mktmpdir(prefix_suffix = nil, tmpdir = nil) -> String (19.0)

一時ディレクトリを作成します。

一時ディレクトリを作成します。

作成されたディレクトリのパーミッションは 0700 です。

ブロックが与えられた場合は、ブロックの評価が終わると
作成された一時ディレクトリやその配下にあったファイルを
FileUtils.#remove_entry を用いて削除し、ブロックの値をかえします。
ブロックが与えられなかった場合は、作成した一時ディレクトリのパスを
返します。この場合、このメソッドは作成した一時ディレクトリを削除しません。

@param prefix_suffix nil の場合は、'd' をデフォルトのプレフィクスとして使用します。サフィックスは付きません。
...

Dir.mktmpdir(prefix_suffix = nil, tmpdir = nil) {|dir| ... } -> object (19.0)

一時ディレクトリを作成します。

一時ディレクトリを作成します。

作成されたディレクトリのパーミッションは 0700 です。

ブロックが与えられた場合は、ブロックの評価が終わると
作成された一時ディレクトリやその配下にあったファイルを
FileUtils.#remove_entry を用いて削除し、ブロックの値をかえします。
ブロックが与えられなかった場合は、作成した一時ディレクトリのパスを
返します。この場合、このメソッドは作成した一時ディレクトリを削除しません。

@param prefix_suffix nil の場合は、'd' をデフォルトのプレフィクスとして使用します。サフィックスは付きません。
...

Encoding.find(name) -> Encoding (19.0)

指定された name という名前を持つ Encoding オブジェクトを返します。

指定された name という名前を持つ Encoding オブジェクトを返します。

@param name エンコーディング名を表す String を指定します。
@return 発見された Encoding オブジェクトを返します。
@raise ArgumentError 指定した名前のエンコーディングが発見できないと発生します。

特殊なエンコーディング名として、ロケールエンコーディングを表す locale、default_external を表す external、default_internal を表す internal、ファイルシステムエンコーディングを表す filesystem...

絞り込み条件を変える

Enumerator::Lazy#chunk_while {|elt_before, elt_after| ... } -> Enumerator::Lazy (19.0)

Enumerable#chunk_while と同じですが、Enumerator ではなく Enumerator::Lazy を返します。

Enumerable#chunk_while と同じですが、Enumerator ではなく Enumerator::Lazy を返します。

@raise ArgumentError ブロックを指定しなかった場合に発生します。

Enumerator::Lazy#collect {|item| ... } -> Enumerator::Lazy (19.0)

Enumerable#map と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#map と同じですが、配列ではなくEnumerator::Lazy を返します。

@raise ArgumentError ブロックを指定しなかった場合に発生します。

//emlist[例][ruby]{
1.step.lazy.map{ |n| n % 3 == 0 }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:map>

1.step.lazy.collect{ |n| n.succ }.take(10).force
# => [2, 3, 4, 5, 6, 7, 8,...

Enumerator::Lazy#collect_concat {|item| ... } -> Enumerator::Lazy (19.0)

ブロックの実行結果をひとつに繋げたものに対してイテレートするような Enumerator::Lazy のインスタンスを返します。

ブロックの実行結果をひとつに繋げたものに対してイテレートするような
Enumerator::Lazy のインスタンスを返します。

//emlist[][ruby]{
["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force
#=> ["f", "o", "o", "b", "a", "r"]
//}

ブロックの返した値 x は、以下の場合にのみ分解され、連結されます。

* x が配列であるか、to_ary メソッドを持つとき
* x が each および force メソッドを持つ (例:Enumerator::Lazy) ...

Enumerator::Lazy#drop(n) -> Enumerator::Lazy (19.0)

Enumerable#drop と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#drop と同じですが、配列ではなくEnumerator::Lazy を返します。

@param n 要素数を指定します。

@raise ArgumentError n に負の数を指定した場合に発生します。

//emlist[例][ruby]{
1.step.lazy.drop(3)
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:drop(3)>

1.step.lazy.drop(3).take(10).force
# => [4, 5, 6, 7, 8, 9, 10, 1...

Enumerator::Lazy#enum_for(method = :each, *args) -> Enumerator::Lazy (19.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

絞り込み条件を変える

Enumerator::Lazy#enum_for(method = :each, *args) {|*args| block} -> Enumerator::Lazy (19.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Enumerator::Lazy#find_all {|item| ... } -> Enumerator::Lazy (19.0)

Enumerable#select と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#select と同じですが、配列ではなくEnumerator::Lazy を返します。

@raise ArgumentError ブロックを指定しなかった場合に発生します。

//emlist[例][ruby]{
1.step.lazy.find_all { |i| i.even? }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:find_all>

1.step.lazy.select { |i| i.even? }.take(10).force
# => [2, 4, 6,...

Enumerator::Lazy#flat_map {|item| ... } -> Enumerator::Lazy (19.0)

ブロックの実行結果をひとつに繋げたものに対してイテレートするような Enumerator::Lazy のインスタンスを返します。

ブロックの実行結果をひとつに繋げたものに対してイテレートするような
Enumerator::Lazy のインスタンスを返します。

//emlist[][ruby]{
["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force
#=> ["f", "o", "o", "b", "a", "r"]
//}

ブロックの返した値 x は、以下の場合にのみ分解され、連結されます。

* x が配列であるか、to_ary メソッドを持つとき
* x が each および force メソッドを持つ (例:Enumerator::Lazy) ...

Enumerator::Lazy#map {|item| ... } -> Enumerator::Lazy (19.0)

Enumerable#map と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#map と同じですが、配列ではなくEnumerator::Lazy を返します。

@raise ArgumentError ブロックを指定しなかった場合に発生します。

//emlist[例][ruby]{
1.step.lazy.map{ |n| n % 3 == 0 }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:map>

1.step.lazy.collect{ |n| n.succ }.take(10).force
# => [2, 3, 4, 5, 6, 7, 8,...

Enumerator::Lazy#reject {|item| ... } -> Enumerator::Lazy (19.0)

Enumerable#reject と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#reject と同じですが、配列ではなくEnumerator::Lazy を返します。

@raise ArgumentError ブロックを指定しなかった場合に発生します。

//emlist[例][ruby]{
1.step.lazy.reject { |i| i.even? }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:reject>

1.step.lazy.reject { |i| i.even? }.take(10).force
# => [1, 3, 5, 7, ...

絞り込み条件を変える

Enumerator::Lazy#select {|item| ... } -> Enumerator::Lazy (19.0)

Enumerable#select と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#select と同じですが、配列ではなくEnumerator::Lazy を返します。

@raise ArgumentError ブロックを指定しなかった場合に発生します。

//emlist[例][ruby]{
1.step.lazy.find_all { |i| i.even? }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:find_all>

1.step.lazy.select { |i| i.even? }.take(10).force
# => [2, 4, 6,...

Enumerator::Lazy#take(n) -> Enumerator::Lazy (19.0)

Enumerable#take と同じですが、配列ではなくEnumerator::Lazy を返します。

Enumerable#take と同じですが、配列ではなくEnumerator::Lazy を返します。

n が大きな数 (100000とか) の場合に備えて再定義されています。
配列が必要な場合は Enumerable#first を使って下さい。

@param n 要素数を指定します。

@raise ArgumentError n に負の数を指定した場合に発生します。

//emlist[例][ruby]{
1.step.lazy.take(5)
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:...

Enumerator::Lazy#to_enum(method = :each, *args) -> Enumerator::Lazy (19.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Enumerator::Lazy#to_enum(method = :each, *args) {|*args| block} -> Enumerator::Lazy (19.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Enumerator::Lazy.new(obj, size=nil) {|yielder, *values| ... } -> Enumerator::Lazy (19.0)

Lazy Enumerator を作成します。Enumerator::Lazy#force メソッドなどに よって列挙が実行されたとき、objのeachメソッドが実行され、値が一つずつ ブロックに渡されます。ブロックは、yielder を使って最終的に yield される値を 指定できます。

Lazy Enumerator を作成します。Enumerator::Lazy#force メソッドなどに
よって列挙が実行されたとき、objのeachメソッドが実行され、値が一つずつ
ブロックに渡されます。ブロックは、yielder を使って最終的に yield される値を
指定できます。

//emlist[Enumerable#filter_map と、その遅延評価版を定義する例][ruby]{
module Enumerable
def filter_map(&block)
map(&block).compact
end
end

class Enumerator::...

絞り込み条件を変える

Etc.#getgrgid(gid) -> Etc::Group (19.0)

group データベースを検索し、グループ ID が gid であるグループエントリを返します。

group データベースを検索し、グループ ID が gid
であるグループエントリを返します。

@param gid 検索する gid

@raise ArgumentError エントリが見つからなかった場合に発生します。

@see getgrgid(3), Etc::Group

Etc.#getgrnam(name) -> Etc::Group (19.0)

name という名前のグループエントリを返します。

name という名前のグループエントリを返します。

@param name 検索するグループ名。

@raise ArgumentError エントリが見つからなかった場合に発生します。

@see getgrnam(3), Etc::Group

Etc.#getpwnam(name) -> Etc::Passwd (19.0)

passwd データベースを検索し、 名前が name である passwd エントリを返します。

passwd データベースを検索し、
名前が name である passwd エントリを返します。

@param name 検索するユーザ名。

@raise ArgumentError エントリが見つからなかった場合に発生します。

@see getpwnam(3), Etc::Passwd

Etc.#getpwuid(uid = getuid) -> Etc::Passwd (19.0)

passwd データベースを検索し、 ユーザ ID が uid である passwd エントリを返します。

passwd データベースを検索し、
ユーザ ID が uid である passwd エントリを返します。

@param uid 検索する uid 。引数を省略した場合には getuid(2) の値を用います。

@raise ArgumentError エントリが見つからなかった場合に発生します。

@see getpwuid(3), Etc::Passwd

File.join(*item) -> String (19.0)

File::SEPARATORを間に入れて文字列を連結します。platform/DOSISH-supportで環境依存になる予定です。

File::SEPARATORを間に入れて文字列を連結します。platform/DOSISH-supportで環境依存になる予定です。

@param item 連結したいディレクトリ名やファイル名を文字列(もしくは文字列を要素に持つ配列)で与えます。
文字列AとBを連結する際に、Aの末尾の文字とBの先頭の文字がFile::SEPARATORであった場合には、
まずこれらを削除した上で改めてFile::SEPARATORを間に入れて連結します。
引数の中に配列がある場合は配列要素を再帰的に展開します。空の配列は空文字列に...

絞り込み条件を変える

FileUtils (19.0)

基本的なファイル操作を集めたモジュールです。

基本的なファイル操作を集めたモジュールです。


===[a:options] オプションの説明

引数 options で使用できるオプションの説明です。
メソッドごとに使用できるオプションは決まっています。
不正なオプションを与えると ArgumentError が発生します。

: :noop
真を指定すると実際の処理は行いません。
: :preserve
真を指定すると更新時刻と、可能なら所有ユーザ・所有グループもコピーします。
: :verbose
真を指定すると詳細を出力します。
: :mode
パーミッションを8進数で指定します。
: :force
真を指定す...

FileUtils.#uptodate?(newer, older_list, options = nil) -> bool (19.0)

newer が、older_list に含まれるすべてのファイルより新しいとき真。 存在しないファイルは無限に古いとみなされます。

newer が、older_list に含まれるすべてのファイルより新しいとき真。
存在しないファイルは無限に古いとみなされます。

@param newer ファイルを一つ指定します。

@param older_list ファイル名の配列を指定します。

@param options どのようなオプションも指定することはできません。

@raise ArgumentError options にオプションを指定した場合に発生します。

//emlist[][ruby]{
require 'fileutils'
FileUtils.uptodate?('hello.o', ['hello....

Float#to_d -> BigDecimal (19.0)

自身を BigDecimal に変換します。

自身を BigDecimal に変換します。

@param prec 計算結果の精度。省略した場合は Float::DIG + 1 です。

@return BigDecimal に変換したオブジェクト

//emlist[][ruby]{
require 'bigdecimal'
require 'bigdecimal/util'

p 1.0.to_d # => 0.1e1
p (1.0 / 0).to_d # => Infinity

p (1.0 / 3).to_d / (2.0 / 3).to_d # => 0.5e0
p ((1.0 / 3) / (2.0 / 3...

Float#to_d(prec) -> BigDecimal (19.0)

自身を BigDecimal に変換します。

自身を BigDecimal に変換します。

@param prec 計算結果の精度。省略した場合は Float::DIG + 1 です。

@return BigDecimal に変換したオブジェクト

//emlist[][ruby]{
require 'bigdecimal'
require 'bigdecimal/util'

p 1.0.to_d # => 0.1e1
p (1.0 / 0).to_d # => Infinity

p (1.0 / 3).to_d / (2.0 / 3).to_d # => 0.5e0
p ((1.0 / 3) / (2.0 / 3...

Gem::Installer#extract_files (19.0)

ファイルのインデックスを読み取って、それぞれのファイルを Gem のディレクトリに展開します。

ファイルのインデックスを読み取って、それぞれのファイルを Gem のディレクトリに展開します。

また、ファイルを Gem ディレクトリにインストールしないようにします。

@raise ArgumentError 自身に Gem::Format がセットされていない場合に発生します。

@raise Gem::InstallError インストール先のパスが不正な場合に発生します。

絞り込み条件を変える

Gem::Requirement.parse(obj) -> Array (19.0)

バージョンの必要上件をパースして比較演算子とバージョンを要素とする二要素の配列を返します。

バージョンの必要上件をパースして比較演算子とバージョンを要素とする二要素の配列を返します。

@param obj 必要上件を表す文字列または Gem::Version のインスタンスを指定します。
@return 比較演算子と Gem::Version のインスタンスを要素とする二要素の配列を返します。
@raise ArgumentError obj に不正なオブジェクトを指定すると発生します。

//emlist[][ruby]{
p Gem::Requirement.parse("~> 3.2.1") # => ["~>", #<Gem::Version "3.2.1">]
//}
...

Gem::Version.create(input) -> Gem::Version | nil (19.0)

Gem::Version のインスタンスを作成するためのファクトリメソッドです。

Gem::Version のインスタンスを作成するためのファクトリメソッドです。

//emlist[][ruby]{
ver1 = Gem::Version.create('1.3.17') # => #<Gem::Version "1.3.17">
ver2 = Gem::Version.create(ver1) # => #<Gem::Version "1.3.17">
ver3 = Gem::Version.create(nil) # => nil
//}

@param input Gem::Version のインスタンスか文字列を指定します。

@r...

Gem::Version.new(version) -> Gem::Version (19.0)

バージョンを表す文字列から、Gem::Version インスタンスを作成します。

バージョンを表す文字列から、Gem::Version インスタンスを作成します。

引数のバージョンを表す文字列とは、 数字かASCII文字の連続であり、ドットで区切られたものです。

//emlist[][ruby]{
p Gem::Version.new('1.2.0a') # => #<Gem::Version "1.2.0a">

# Ruby 2.4.1より、空白文字以外の文字がない場合、バージョンは "0" になります。
p Gem::Version.new(' ') #=> #<Gem::Version "0">
//}

@param version
@raise Argum...

GetoptLong#ordering=(ordering) (19.0)

順序形式を設定します。

順序形式を設定します。

環境変数 POSIXLY_CORRECT が定義されていると、引数に
GetoptLong::PERMUTE を与えてこのメソッドを呼び出しても、実際のところの順
序形式は GetoptLong::REQUIRE_ORDER に設定されます。

環境変数 POSIXLY_CORRECT が定義されていない限り、GetoptLong::PERMUTE
が初期値です。定義されていれば、GetoptLong::REQUIRE_ORDER が初期値になり
ます。

@param ordering GetoptLong::REQUIRE_ORDER, GetoptLong::...

GetoptLong#set_options(*arguments) -> self (19.0)

あなたのプログラムで、認識させたいオプションをセットします。 個々のオプションは、オプション名と引数のフラグからなる配列でな ければいけません。

あなたのプログラムで、認識させたいオプションをセットします。
個々のオプションは、オプション名と引数のフラグからなる配列でな
ければいけません。

配列中のオプション名は、一文字オプション (例: -d) か長いオプ
ション (例: --debug) を表した文字列のいずれかでなければなり
ません。配列の中の一番左端のオプション名が、オプションの正式名
になります。配列中の引数のフラグは、GetoptLong::NO_ARGUMENT,
GetoptLong::REQUIRE_ARGUMENT, GetoptLong::OPTIONAL_ARGUMENT
のいずれかでなくてはなりません。

オ...

絞り込み条件を変える

Hash.[](*key_and_value) -> Hash (19.0)

新しいハッシュを生成します。 引数は必ず偶数個指定しなければなりません。奇数番目がキー、偶数番目が値になります。

新しいハッシュを生成します。
引数は必ず偶数個指定しなければなりません。奇数番目がキー、偶数番目が値になります。

このメソッドでは生成するハッシュにデフォルト値を指定することはできません。
Hash.newを使うか、Hash#default=で後から指定してください。

@param key_and_value 生成するハッシュのキーと値の組です。必ず偶数個(0を含む)指定しなければいけません。
@raise ArgumentError 奇数個の引数を与えたときに発生します。

以下は配列からハッシュを生成する方法の例です。

(1) [キー, 値, ...] の配列からハッシュへ

//...

Hash.new {|hash, key| ... } -> Hash (19.0)

空の新しいハッシュを生成します。ブロックの評価結果がデフォルト値になりま す。設定したデフォルト値はHash#default_procで参照できます。

空の新しいハッシュを生成します。ブロックの評価結果がデフォルト値になりま
す。設定したデフォルト値はHash#default_procで参照できます。

値が設定されていないハッシュ要素を参照するとその都度ブロックを
実行し、その結果を返します。
ブロックにはそのハッシュとハッシュを参照したときのキーが渡されます。

@raise ArgumentError ブロックと通常引数を同時に与えると発生します。

//emlist[例][ruby]{
# ブロックではないデフォルト値は全部同一のオブジェクトなので、
# 破壊的変更によって他のキーに対応する値も変更されます。
h = Hash.new...

IO#raw(min: 1, time: 0, intr: false) {|io| ... } -> object (19.0)

raw モード、行編集を無効にして指定されたブロックを評価します。

raw モード、行編集を無効にして指定されたブロックを評価します。

ブロック引数には self が渡されます。ブロックを評価した結果を返します。

@param min 入力操作 (read) 時に受信したい最小のバイト数を指定します。min 値以上のバイト数を受信するまで、操作がブロッキングされます。

@param time タイムアウトするまでの秒数を指定します。time よりも min が優先されるため、入力バイト数が min 値以上になるまでは、time 値に関わらず操作がブロッキングされます。

@param intr trueを指定した場合は、割り込み (interrupt)...

IO#read(length = nil, outbuf = "") -> String | nil (19.0)

length バイト読み込んで、その文字列を返します。

length バイト読み込んで、その文字列を返します。

引数 length が指定された場合はバイナリ読み込みメソッド、そうでない場合はテキスト読み込みメソッドとして
動作します。
既に EOF に達していれば nil を返します。
ただし、length に nil か 0 が指定されている場合は、空文字列 "" を返します。
例えば、open(空ファイル) {|f| f.read } は "" となります。

@param length 読み込むサイズを整数で指定します。
nil が指定された場合、EOF までの全てのデータを読み込んで、その文字列を返します。...

IO.read(path, **opt) -> String | nil (19.0)

path で指定されたファイルを offset 位置から length バイト分読み込んで返します。

path で指定されたファイルを offset 位置から
length バイト分読み込んで返します。

既に EOF に達している場合は nil を返します。ただし、length に nil か 0 が指定されている場合は、空文字列 "" を返します。例えば、IO.read(空ファイル) は "" を返します。

引数 length が指定された場合はバイナリ読み込みメソッド、そうでない場合はテキスト読み込みメソッドとして
動作します。

Kernel.#open と同様 path の先頭が "|" ならば、"|" に続くコマンドの出力を読み取ります。

@param path ファイル名を...

絞り込み条件を変える

IO.read(path, length = nil, **opt) -> String | nil (19.0)

path で指定されたファイルを offset 位置から length バイト分読み込んで返します。

path で指定されたファイルを offset 位置から
length バイト分読み込んで返します。

既に EOF に達している場合は nil を返します。ただし、length に nil か 0 が指定されている場合は、空文字列 "" を返します。例えば、IO.read(空ファイル) は "" を返します。

引数 length が指定された場合はバイナリ読み込みメソッド、そうでない場合はテキスト読み込みメソッドとして
動作します。

Kernel.#open と同様 path の先頭が "|" ならば、"|" に続くコマンドの出力を読み取ります。

@param path ファイル名を...

IO.read(path, length = nil, offset = 0, **opt) -> String | nil (19.0)

path で指定されたファイルを offset 位置から length バイト分読み込んで返します。

path で指定されたファイルを offset 位置から
length バイト分読み込んで返します。

既に EOF に達している場合は nil を返します。ただし、length に nil か 0 が指定されている場合は、空文字列 "" を返します。例えば、IO.read(空ファイル) は "" を返します。

引数 length が指定された場合はバイナリ読み込みメソッド、そうでない場合はテキスト読み込みメソッドとして
動作します。

Kernel.#open と同様 path の先頭が "|" ならば、"|" に続くコマンドの出力を読み取ります。

@param path ファイル名を...

Integer#digits -> [Integer] (19.0)

base を基数として self を位取り記数法で表記した数値を配列で返します。 base を指定しない場合の基数は 10 です。

base を基数として self を位取り記数法で表記した数値を配列で返します。
base を指定しない場合の基数は 10 です。

//emlist[][ruby]{
16.digits # => [6, 1]
16.digits(16) # => [0, 1]
//}

self は非負整数でなければいけません。非負整数でない場合は、Math::DomainErrorが発生します。

//emlist[][ruby]{
-10.digits # Math::DomainError: out of domain が発生
//}

@return 位取り記数法で表した時の数...

Integer#digits(base) -> [Integer] (19.0)

base を基数として self を位取り記数法で表記した数値を配列で返します。 base を指定しない場合の基数は 10 です。

base を基数として self を位取り記数法で表記した数値を配列で返します。
base を指定しない場合の基数は 10 です。

//emlist[][ruby]{
16.digits # => [6, 1]
16.digits(16) # => [0, 1]
//}

self は非負整数でなければいけません。非負整数でない場合は、Math::DomainErrorが発生します。

//emlist[][ruby]{
-10.digits # Math::DomainError: out of domain が発生
//}

@return 位取り記数法で表した時の数...

Integer#gcd(n) -> Integer (19.0)

自身と整数 n の最大公約数を返します。

自身と整数 n の最大公約数を返します。

@raise ArgumentError n に整数以外のものを指定すると発生します。

//emlist[][ruby]{
2.gcd(2) # => 2
3.gcd(7) # => 1
3.gcd(-7) # => 1
((1<<31)-1).gcd((1<<61)-1) # => 1
//}

また、self や n が 0 だった場合は、0 ではない方の整数の絶対値を返します。

//emlist[][ruby]{
3.gcd(...

絞り込み条件を変える

Integer#gcdlcm(n) -> [Integer] (19.0)

自身と整数 n の最大公約数と最小公倍数の配列 [self.gcd(n), self.lcm(n)] を返します。

自身と整数 n の最大公約数と最小公倍数の配列 [self.gcd(n), self.lcm(n)]
を返します。

@raise ArgumentError n に整数以外のものを指定すると発生します。

//emlist[][ruby]{
2.gcdlcm(2) # => [2, 2]
3.gcdlcm(-7) # => [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) # => [1, 4951760154835678088235319297]
//}

@see Integer#gc...

Integer#inspect(base=10) -> String (19.0)

整数を 10 進文字列表現に変換します。

整数を 10 進文字列表現に変換します。

引数を指定すれば、それを基数とした文字列表
現に変換します。

//emlist[][ruby]{
p 10.to_s(2) # => "1010"
p 10.to_s(8) # => "12"
p 10.to_s(16) # => "a"
p 35.to_s(36) # => "z"
//}

@return 数値の文字列表現
@param base 基数となる 2 - 36 の数値。
@raise ArgumentError base に 2 - 36 以外の数値を指定した場合に発生します。

Integer#lcm(n) -> Integer (19.0)

自身と整数 n の最小公倍数を返します。

自身と整数 n の最小公倍数を返します。

@raise ArgumentError n に整数以外のものを指定すると発生します。

//emlist[][ruby]{
2.lcm(2) # => 2
3.lcm(-7) # => 21
((1<<31)-1).lcm((1<<61)-1) # => 4951760154835678088235319297
//}

また、self や n が 0 だった場合は、0 を返します。

//emlist[][ruby]{
3.lcm(0) ...

Integer#to_s(base=10) -> String (19.0)

整数を 10 進文字列表現に変換します。

整数を 10 進文字列表現に変換します。

引数を指定すれば、それを基数とした文字列表
現に変換します。

//emlist[][ruby]{
p 10.to_s(2) # => "1010"
p 10.to_s(8) # => "12"
p 10.to_s(16) # => "a"
p 35.to_s(36) # => "z"
//}

@return 数値の文字列表現
@param base 基数となる 2 - 36 の数値。
@raise ArgumentError base に 2 - 36 以外の数値を指定した場合に発生します。

Kernel.#exec(env, program, *args, options={}) -> () (19.0)

引数で指定されたコマンドを実行します。

引数で指定されたコマンドを実行します。

プロセスの実行コードはそのコマンド(あるいは shell)になるので、
起動に成功した場合、このメソッドからは戻りません。

この形式では、常に shell を経由せずに実行されます。

exec(3) でコマンドを実行すると、
元々のプログラムの環境をある程度(ファイルデスクリプタなど)引き継ぎます。
Hash を options として渡すことで、この挙動を変更できます。
詳しくは Kernel.#spawn を参照してください。

=== 引数の解釈

この形式で呼び出した場合、空白や shell のメタキャラクタも
そのまま program ...

絞り込み条件を変える

Kernel.#exec(program, *args, options={}) -> () (19.0)

引数で指定されたコマンドを実行します。

引数で指定されたコマンドを実行します。

プロセスの実行コードはそのコマンド(あるいは shell)になるので、
起動に成功した場合、このメソッドからは戻りません。

この形式では、常に shell を経由せずに実行されます。

exec(3) でコマンドを実行すると、
元々のプログラムの環境をある程度(ファイルデスクリプタなど)引き継ぎます。
Hash を options として渡すことで、この挙動を変更できます。
詳しくは Kernel.#spawn を参照してください。

=== 引数の解釈

この形式で呼び出した場合、空白や shell のメタキャラクタも
そのまま program ...

Kernel.#fail -> () (19.0)

例外を発生させます。 発生した例外は変数 $! に格納されます。また例外が 発生した時のスタックトレースは変数 $@ に格納され ます。発生した例外は rescue 節で捕捉できます。

例外を発生させます。
発生した例外は変数 $! に格納されます。また例外が
発生した時のスタックトレースは変数 $@ に格納され
ます。発生した例外は rescue 節で捕捉できます。

引数無しの場合は、同スレッドの同じブロック内で最後に rescue された
例外オブジェクト ($!) を再発生させます。そのような
例外が存在しないが自身は捕捉されている時には例外 RuntimeError を発生させます。

//emlist[例][ruby]{
begin
open("nonexist")
rescue
raise #=> `open': No such file or d...

Kernel.#fail(error_type, message = nil, backtrace = caller(0), cause: $!) -> () (19.0)

例外を発生させます。 発生した例外は変数 $! に格納されます。また例外が 発生した時のスタックトレースは変数 $@ に格納され ます。発生した例外は rescue 節で捕捉できます。

例外を発生させます。
発生した例外は変数 $! に格納されます。また例外が
発生した時のスタックトレースは変数 $@ に格納され
ます。発生した例外は rescue 節で捕捉できます。

引数無しの場合は、同スレッドの同じブロック内で最後に rescue された
例外オブジェクト ($!) を再発生させます。そのような
例外が存在しないが自身は捕捉されている時には例外 RuntimeError を発生させます。

//emlist[例][ruby]{
begin
open("nonexist")
rescue
raise #=> `open': No such file or d...

Kernel.#fail(message, cause: $!) -> () (19.0)

例外を発生させます。 発生した例外は変数 $! に格納されます。また例外が 発生した時のスタックトレースは変数 $@ に格納され ます。発生した例外は rescue 節で捕捉できます。

例外を発生させます。
発生した例外は変数 $! に格納されます。また例外が
発生した時のスタックトレースは変数 $@ に格納され
ます。発生した例外は rescue 節で捕捉できます。

引数無しの場合は、同スレッドの同じブロック内で最後に rescue された
例外オブジェクト ($!) を再発生させます。そのような
例外が存在しないが自身は捕捉されている時には例外 RuntimeError を発生させます。

//emlist[例][ruby]{
begin
open("nonexist")
rescue
raise #=> `open': No such file or d...

Kernel.#printf(format, *arg) -> nil (19.0)

C 言語の printf と同じように、format に従い引数を文字列に変 換して port に出力します。

C 言語の printf と同じように、format に従い引数を文字列に変
換して port に出力します。

port を省略した場合は標準出力 $stdout に出力します。

引数を 1 つも指定しなければ何もしません。

Ruby における format 文字列の拡張については
Kernel.#sprintfの項を参照してください。

@param port 出力先になるIO のサブクラスのインスタンスです。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@raise ArgumentError port を指定したのに ...

絞り込み条件を変える

Kernel.#printf(port, format, *arg) -> nil (19.0)

C 言語の printf と同じように、format に従い引数を文字列に変 換して port に出力します。

C 言語の printf と同じように、format に従い引数を文字列に変
換して port に出力します。

port を省略した場合は標準出力 $stdout に出力します。

引数を 1 つも指定しなければ何もしません。

Ruby における format 文字列の拡張については
Kernel.#sprintfの項を参照してください。

@param port 出力先になるIO のサブクラスのインスタンスです。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@raise ArgumentError port を指定したのに ...

Kernel.#raise -> () (19.0)

例外を発生させます。 発生した例外は変数 $! に格納されます。また例外が 発生した時のスタックトレースは変数 $@ に格納され ます。発生した例外は rescue 節で捕捉できます。

例外を発生させます。
発生した例外は変数 $! に格納されます。また例外が
発生した時のスタックトレースは変数 $@ に格納され
ます。発生した例外は rescue 節で捕捉できます。

引数無しの場合は、同スレッドの同じブロック内で最後に rescue された
例外オブジェクト ($!) を再発生させます。そのような
例外が存在しないが自身は捕捉されている時には例外 RuntimeError を発生させます。

//emlist[例][ruby]{
begin
open("nonexist")
rescue
raise #=> `open': No such file or d...

Kernel.#raise(error_type, message = nil, backtrace = caller(0), cause: $!) -> () (19.0)

例外を発生させます。 発生した例外は変数 $! に格納されます。また例外が 発生した時のスタックトレースは変数 $@ に格納され ます。発生した例外は rescue 節で捕捉できます。

例外を発生させます。
発生した例外は変数 $! に格納されます。また例外が
発生した時のスタックトレースは変数 $@ に格納され
ます。発生した例外は rescue 節で捕捉できます。

引数無しの場合は、同スレッドの同じブロック内で最後に rescue された
例外オブジェクト ($!) を再発生させます。そのような
例外が存在しないが自身は捕捉されている時には例外 RuntimeError を発生させます。

//emlist[例][ruby]{
begin
open("nonexist")
rescue
raise #=> `open': No such file or d...

Kernel.#raise(message, cause: $!) -> () (19.0)

例外を発生させます。 発生した例外は変数 $! に格納されます。また例外が 発生した時のスタックトレースは変数 $@ に格納され ます。発生した例外は rescue 節で捕捉できます。

例外を発生させます。
発生した例外は変数 $! に格納されます。また例外が
発生した時のスタックトレースは変数 $@ に格納され
ます。発生した例外は rescue 節で捕捉できます。

引数無しの場合は、同スレッドの同じブロック内で最後に rescue された
例外オブジェクト ($!) を再発生させます。そのような
例外が存在しないが自身は捕捉されている時には例外 RuntimeError を発生させます。

//emlist[例][ruby]{
begin
open("nonexist")
rescue
raise #=> `open': No such file or d...

Kernel.#spawn(env, program, *args, options={}) -> Integer (19.0)

引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。

引数を外部コマンドとして実行しますが、生成した
子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。

env に Hash を渡すことで、exec(2) で子プロセス内で
ファイルを実行する前に環境変数を変更することができます。
Hash のキーは環境変数名文字列、Hash の値に設定する値とします。
nil とすることで環境変数が削除(unsetenv(3))されます。
//emlist[例][ruby]{
# FOO を BAR にして BAZ を削除する
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
//...

絞り込み条件を変える

Kernel.#spawn(program, *args) -> Integer (19.0)

引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。

引数を外部コマンドとして実行しますが、生成した
子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。

env に Hash を渡すことで、exec(2) で子プロセス内で
ファイルを実行する前に環境変数を変更することができます。
Hash のキーは環境変数名文字列、Hash の値に設定する値とします。
nil とすることで環境変数が削除(unsetenv(3))されます。
//emlist[例][ruby]{
# FOO を BAR にして BAZ を削除する
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
//...

Kernel.#sub(pattern) {|matched| ... } -> String (19.0)

$_.sub とほぼ同じですが、置換が発生したときは、$_の内容を置き換える点が異なります。 コマンドラインオプションで -p または -n を指定した時のみ定義されます。

$_.sub とほぼ同じですが、置換が発生したときは、$_の内容を置き換える点が異なります。
コマンドラインオプションで -p または -n を指定した時のみ定義されます。

暗号的になりすぎるきらいがあるため、このメソッドの使用は推奨されていません。
今後はより明示的な $_.sub を使ってください。

@raise ArgumentError replace を指定しなかった場合に発生します。

$_.sub とこのメソッド sub は以下の点で違いがあります。

* sub は $_ の値をコピーして、コピーの方を更新し、
$_ に再代入します。

@param patter...

Kernel.#sub(pattern, replace) -> String (19.0)

$_.sub とほぼ同じですが、置換が発生したときは、$_の内容を置き換える点が異なります。 コマンドラインオプションで -p または -n を指定した時のみ定義されます。

$_.sub とほぼ同じですが、置換が発生したときは、$_の内容を置き換える点が異なります。
コマンドラインオプションで -p または -n を指定した時のみ定義されます。

暗号的になりすぎるきらいがあるため、このメソッドの使用は推奨されていません。
今後はより明示的な $_.sub を使ってください。

@raise ArgumentError replace を指定しなかった場合に発生します。

$_.sub とこのメソッド sub は以下の点で違いがあります。

* sub は $_ の値をコピーして、コピーの方を更新し、
$_ に再代入します。

@param patter...

Kernel.#system(env, program, *args, options={}) -> bool | nil (19.0)

引数を外部コマンドとして実行して、成功した時に真を返します。

引数を外部コマンドとして実行して、成功した時に真を返します。

子プロセスが終了ステータス 0 で終了すると成功とみなし true を返します。
それ以外の終了ステータスの場合は false を返します。
コマンドを実行できなかった場合は nil を返します。


終了ステータスは変数 $? で参照できます。

コマンドを実行することができなかった場合、多くのシェルはステータス
127 を返します。シェルを介さない場合は Ruby の子プロセスがステータス
127 で終了します。コマンドが実行できなかったのか、コマンドが失敗したの
かは、普通 $? を参照することで判別可能です。

Hash...

Kernel.#system(program, *args, options={}) -> bool | nil (19.0)

引数を外部コマンドとして実行して、成功した時に真を返します。

引数を外部コマンドとして実行して、成功した時に真を返します。

子プロセスが終了ステータス 0 で終了すると成功とみなし true を返します。
それ以外の終了ステータスの場合は false を返します。
コマンドを実行できなかった場合は nil を返します。


終了ステータスは変数 $? で参照できます。

コマンドを実行することができなかった場合、多くのシェルはステータス
127 を返します。シェルを介さない場合は Ruby の子プロセスがステータス
127 で終了します。コマンドが実行できなかったのか、コマンドが失敗したの
かは、普通 $? を参照することで判別可能です。

Hash...

絞り込み条件を変える

Matrix#cofactor_expansion(row: nil, column: nil) -> object | Integer | Rational | Float (19.0)

row 行、もしくは column 列に関するラプラス展開をする。

row 行、もしくは column 列に関するラプラス展開をする。

通常の行列に対してはこれは単に固有値を計算するだけです。かわりにMatrix#determinant を
利用すべきです。

変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には

//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1) # => 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]]....

Matrix#first_minor(row, column) -> Matrix (19.0)

self から第 row 行と第 column 列を取り除いた行列を返します。

self から第 row 行と第 column 列を取り除いた行列を返します。

@param row 行
@param column 列
@raise ArgumentError row, column が行列の行数/列数を越えている場合に発生します。

Matrix#laplace_expansion(row: nil, column: nil) -> object | Integer | Rational | Float (19.0)

row 行、もしくは column 列に関するラプラス展開をする。

row 行、もしくは column 列に関するラプラス展開をする。

通常の行列に対してはこれは単に固有値を計算するだけです。かわりにMatrix#determinant を
利用すべきです。

変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には

//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1) # => 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]]....

Matrix.empty(row_size=0, column_size=0) -> Matrix (19.0)

要素を持たない行列を返します。

要素を持たない行列を返します。

「要素を持たない」とは、行数もしくは列数が0の行列のことです。

row_size 、 column_size のいずれか一方は0である必要があります。

//emlist[例][ruby]{
require 'matrix'
m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
# => true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
# => true
m * n
# => Matrix[[0, 0, 0], [0, 0, 0]]
//}

...

NEWS for Ruby 2.0.0 (19.0)

NEWS for Ruby 2.0.0 このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。

NEWS for Ruby 2.0.0
このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。

それぞれのエントリーは参照情報があるため短いです。
十分な情報と共に書かれた全ての変更のリストは ChangeLog ファイルか bugs.ruby-lang.org の issue を参照してください。

== 1.9.3 以降の変更

=== 言語仕様の変更

* キーワード引数を追加しました
* %i, %I をシンボルの配列作成のために追加しました。(%w, %W に似ています)
* デフォルトのソースエンコーディングを US-ASCI...

絞り込み条件を変える

Numeric#step(by: 1, to: Float::INFINITY) -> Enumerator (19.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(by: 1, to: Float::INFINITY) {|n| ... } -> self (19.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(by:, to: -Float::INFINITY) -> Enumerator (19.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(by:, to: -Float::INFINITY) {|n| ... } -> self (19.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(limit, step = 1) -> Enumerator (19.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

絞り込み条件を変える

Numeric#step(limit, step = 1) {|n| ... } -> self (19.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Object#clone(freeze: true) -> object (19.0)

オブジェクトの複製を作成して返します。

オブジェクトの複製を作成して返します。

dup はオブジェクトの内容, taint 情報をコピーし、
clone はそれに加えて freeze, 特異メソッドなどの情報も含めた完全な複製を作成します。

clone や dup は浅い(shallow)コピーであることに注意してください。後述。

TrueClass, FalseClass, NilClass, Symbol, そして Numeric クラスのインスタンスなど一部のオブジェクトは複製ではなくインスタンス自身を返します。

@param freeze false を指定すると freeze されていないコピーを返します。
@r...

Object#dup -> object (19.0)

オブジェクトの複製を作成して返します。

オブジェクトの複製を作成して返します。

dup はオブジェクトの内容, taint 情報をコピーし、
clone はそれに加えて freeze, 特異メソッドなどの情報も含めた完全な複製を作成します。

clone や dup は浅い(shallow)コピーであることに注意してください。後述。

TrueClass, FalseClass, NilClass, Symbol, そして Numeric クラスのインスタンスなど一部のオブジェクトは複製ではなくインスタンス自身を返します。

@param freeze false を指定すると freeze されていないコピーを返します。
@r...

Object#enum_for(method = :each, *args) -> Enumerator (19.0)

Enumerator.new(self, method, *args) を返します。

Enumerator.new(self, method, *args) を返します。

ブロックを指定した場合は Enumerator#size がブロックの評価結果を返
します。ブロックパラメータは引数 args です。


@param method メソッド名の文字列かシンボルです。
@param args 呼び出すメソッドに渡される引数です。

//emlist[][ruby]{
str = "xyz"

enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]

#...

Object#enum_for(method = :each, *args) {|*args| ... } -> Enumerator (19.0)

Enumerator.new(self, method, *args) を返します。

Enumerator.new(self, method, *args) を返します。

ブロックを指定した場合は Enumerator#size がブロックの評価結果を返
します。ブロックパラメータは引数 args です。


@param method メソッド名の文字列かシンボルです。
@param args 呼び出すメソッドに渡される引数です。

//emlist[][ruby]{
str = "xyz"

enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]

#...

絞り込み条件を変える

<< < 1 2 3 4 > >>