るりまサーチ (Ruby 2.3.0)

最速Rubyリファレンスマニュアル検索!
139件ヒット [1-100件を表示] (0.115秒)

別のキーワード

  1. numeric step
  2. _builtin numeric
  3. numeric numerator
  4. numeric nonzero?
  5. numeric ceil

ライブラリ

クラス

モジュール

キーワード

検索結果

<< 1 2 > >>

Numeric#rect -> [Numeric, Numeric] (91264.0)

[self, 0] を返します。

[self, 0] を返します。

//emlist[例][ruby]{
1.rect # => [1, 0]
-1.rect # => [-1, 0]
1.0.rect # => [1.0, 0]
-1.0.rect # => [-1.0, 0]
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Complex#rect

Numeric#rectangular -> [Numeric, Numeric] (91264.0)

[self, 0] を返します。

[self, 0] を返します。

//emlist[例][ruby]{
1.rect # => [1, 0]
-1.rect # => [-1, 0]
1.0.rect # => [1.0, 0]
-1.0.rect # => [-1.0, 0]
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Complex#rect

Numeric#polar -> [Numeric, Numeric] (91252.0)

自身の絶対値と偏角を配列にして返します。正の数なら [self, 0]、負の数な ら [-self, Math::PI] を返します。

自身の絶対値と偏角を配列にして返します。正の数なら [self, 0]、負の数な
ら [-self, Math::PI] を返します。

//emlist[例][ruby]{
1.0.polar # => [1.0, 0]
2.0.polar # => [2.0, 0]
-1.0.polar # => [1.0, 3.141592653589793]
-2.0.polar # => [2.0, 3.141592653589793]
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Complex#polar

Numeric#divmod(other) -> [Numeric] (90754.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

self を other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。

ここで、商 q と余り r は、

* self == other * q + r

* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
divmod が返す商は Numeric#div と同じです。
また余りは、Numeric#modulo と同じです。
このメソッド...

Numeric#%(other) -> Numeric (90724.0)

self を other で割った余り r を返します。

self を other で割った余り r を返します。

ここで、商 q と余り r は、

* self == other * q + r

* other > 0 のとき 0 <= r < other
* other < 0 のとき other < r <= 0
* q は整数

をみたす数です。
余り r は、other と同じ符号になります。
商 q は、Numeric#div (あるいは 「/」)で求められます。
modulo はメソッド % の呼び出しとして定義されています。

@param other 自身を割る数を指定します。

//emlist[...

絞り込み条件を変える

Numeric#modulo(other) -> Numeric (90724.0)

self を other で割った余り r を返します。

self を other で割った余り r を返します。

ここで、商 q と余り r は、

* self == other * q + r

* other > 0 のとき 0 <= r < other
* other < 0 のとき other < r <= 0
* q は整数

をみたす数です。
余り r は、other と同じ符号になります。
商 q は、Numeric#div (あるいは 「/」)で求められます。
modulo はメソッド % の呼び出しとして定義されています。

@param other 自身を割る数を指定します。

//emlist[...

Numeric#real -> Numeric (90682.0)

自身を返します。

自身を返します。

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

//emlist[例][ruby]{
10.real # => 10
-10.real # => -10
0.1.real # => 0.1
Rational(2, 3).real # => (2/3)
//}

@see Numeric#imag、Complex#real

Numeric#remainder(other) -> Numeric (90682.0)

self を other で割った余り r を返します。

self を other で割った余り r を返します。

ここで、商 q と余り r は、

* self == other * q + r


* self > 0 のとき 0 <= r < |other|
* self < 0 のとき -|other| < r <= 0
* q は整数

をみたす数です。r の符号は self と同じになります。
商 q を直接返すメソッドはありません。self.quo(other).truncate がそれに相当します。

@param other 自身を割る数を指定します。

//emlist[例][ruby]{
p 13....

Numeric#conj -> Numeric (90652.0)

常に self を返します。

常に self を返します。

自身が Complex かそのサブクラスのインスタンスの場合は、自身の共役複素数(実数の場合は常に自身)を返します。

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。


//emlist[例][ruby]{
10.conj # => 10
0.1.conj # => 0.1
(2/3r).conj # => (2/3)
//}

@see Complex#conj

Numeric#conjugate -> Numeric (90652.0)

常に self を返します。

常に self を返します。

自身が Complex かそのサブクラスのインスタンスの場合は、自身の共役複素数(実数の場合は常に自身)を返します。

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。


//emlist[例][ruby]{
10.conj # => 10
0.1.conj # => 0.1
(2/3r).conj # => (2/3)
//}

@see Complex#conj

絞り込み条件を変える

Numeric#abs2 -> Numeric (90646.0)

自身の絶対値の 2 乗を返します。

自身の絶対値の 2 乗を返します。


//emlist[例][ruby]{
2.abs2 # => 4
-2.abs2 # => 4
2.0.abs2 # => 4
-2.0.abs2 # => 4
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

Numeric#coerce(other) -> [Numeric] (90646.0)

自身と other が同じクラスになるよう、自身か other を変換し [other, self] という配列にして返します。

自身と other が同じクラスになるよう、自身か other を変換し [other, self] という配列にして返します。

デフォルトでは self と other を Float に変換して [other, self] という配列にして返します。
Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。
以下は Rational の coerce のソースです。other が自身の知らない数値クラスであった場合、
super を呼んでいることに注意して下さい。


//emlist[例][ruby]{
# lib/rational.rb より

def co...

Numeric#abs -> Numeric (90616.0)

自身の絶対値を返します。

自身の絶対値を返します。

//emlist[例][ruby]{
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
//}

Numeric#magnitude -> Numeric (90616.0)

自身の絶対値を返します。

自身の絶対値を返します。

//emlist[例][ruby]{
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
//}

Numeric#-@ -> Numeric (90610.0)

単項演算子の - です。 self の符号を反転させたものを返します。

単項演算子の - です。
self の符号を反転させたものを返します。

このメソッドは、二項演算子 - で 0 - self によって定義されています。


@see Integer#-@、Float#-@、Rational#-@、Complex#-@

絞り込み条件を変える

Numeric#quo(other) -> Rational | Float | Complex (90208.0)

self を other で割った商を返します。 整商を得たい場合は Numeric#div を使ってください。

self を other で割った商を返します。
整商を得たい場合は Numeric#div を使ってください。

Numeric#fdiv が結果を Float で返すメソッドなのに対して quo はなるべく正確な数値を返すことを意図しています。
具体的には有理数の範囲に収まる計算では Rational の値を返します。
Float や Complex が関わるときはそれらのクラスになります。

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。


@param other 自身を割る数を指定します。

//emlist[例][ruby]{
1.quo(3)...

Numeric#ceil -> Integer (90112.0)

自身と等しいかより大きな整数のうち最小のものを返します。

自身と等しいかより大きな整数のうち最小のものを返します。

//emlist[例][ruby]{
1.ceil #=> 1
1.2.ceil #=> 2
(-1.2).ceil #=> -1
(-1.5).ceil #=> -1
//}

@see Numeric#floor, Numeric#round, Numeric#truncate

Numeric#floor -> Integer (90112.0)

自身と等しいかより小さな整数のうち最大のものを返します。

自身と等しいかより小さな整数のうち最大のものを返します。


//emlist[例][ruby]{
1.floor #=> 1
1.2.floor #=> 1
(-1.2).floor #=> -2
(-1.5).floor #=> -2
//}

@see Numeric#ceil, Numeric#round, Numeric#truncate

Numeric#round -> Integer (90112.0)

自身ともっとも近い整数を返します。

自身ともっとも近い整数を返します。

中央値 0.5, -0.5 はそれぞれ 1,-1 に切り上げされます。いわゆる四捨五入ですが、偶数丸めではありません。

//emlist[例][ruby]{
1.round #=> 1
1.2.round #=> 1
(-1.2).round #=> -1
(-1.5).round #=> -2
//}

@see Numeric#ceil, Numeric#floor, Numeric#truncate

Numeric#truncate -> Integer (90112.0)

0 から 自身までの整数で、自身にもっとも近い整数を返します。

0 から 自身までの整数で、自身にもっとも近い整数を返します。

//emlist[例][ruby]{
1.truncate #=> 1
1.2.truncate #=> 1
(-1.2).truncate #=> -1
(-1.5).truncate #=> -1
//}

@see Numeric#ceil, Numeric#floor, Numeric#round

絞り込み条件を変える

Numeric#fdiv(other) -> Float | Complex (90076.0)

self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。

self を other で割った商を Float で返します。
ただし Complex が関わる場合は例外です。
その場合も成分は Float になります。

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@param other 自身を割る数を指定します。

//emlist[例][ruby]{
1.fdiv(3) #=> 0.3333333333333333
Complex(1, 1).fdiv 1 #=> (1.0+1.0i)
1.fdiv Complex(1, 1) #=> (0.5-0.5i)
//}

@see Num...

Numeric#imag -> 0 (90076.0)

常に 0 を返します。

常に 0 を返します。

//emlist[例][ruby]{
12.imag # => 0
-12.imag # => 0
1.2.imag # => 0
-1.2.imag # => 0
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Numeric#real、Complex#imag

Numeric#imaginary -> 0 (90076.0)

常に 0 を返します。

常に 0 を返します。

//emlist[例][ruby]{
12.imag # => 0
-12.imag # => 0
1.2.imag # => 0
-1.2.imag # => 0
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Numeric#real、Complex#imag

Numeric#integer? -> bool (90076.0)

自身が Integer かそのサブクラスのインスタンスの場合にtrue を返し ます。そうでない場合に false を返します。

自身が Integer かそのサブクラスのインスタンスの場合にtrue を返し
ます。そうでない場合に false を返します。

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

//emlist[例][ruby]{
(1.0).integer? #=> false
(1).integer? #=> true
//}

@see Numeric#real?

Numeric#real? -> bool (90076.0)

常に true を返します。(Complex またはそのサブクラスではないことを意味します。)

常に true を返します。(Complex またはそのサブクラスではないことを意味します。)

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

//emlist[例][ruby]{
10.real? # => true
-10.real? # => true
0.1.real? # => true
Rational(2, 3).real? # => true
//}

@see Numeric#integer?、Complex#real?

絞り込み条件を変える

Numeric#<=>(other) -> -1 | 0 | 1 | nil (90040.0)

自身が other より大きい場合に 1 を、等しい場合に 0 を、小さい場合には -1 をそれぞれ返します。 自身と other が比較できない場合には nil を返します。

自身が other より大きい場合に 1 を、等しい場合に 0 を、小さい場合には -1 をそれぞれ返します。
自身と other が比較できない場合には nil を返します。

Numeric のサブクラスは、上の動作を満たすよう このメソッドを適切に再定義しなければなりません。

@param other 自身と比較したい数値を指定します。

//emlist[例][ruby]{
1 <=> 0 #=> 1
1 <=> 1 #=> 0
1 <=> 2 #=> -1
1 <=> "0" #=> nil
//}

Numeric#angle -> 0 | Math::PI (90040.0)

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

//emlist[例][ruby]{
1.arg # => 0
-1.arg # => 3.141592653589793
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Complex#arg

Numeric#arg -> 0 | Math::PI (90040.0)

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

//emlist[例][ruby]{
1.arg # => 0
-1.arg # => 3.141592653589793
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Complex#arg

Numeric#denominator -> Integer (90040.0)

自身を Rational に変換した時の分母を返します。

自身を Rational に変換した時の分母を返します。

@return 分母を返します。


@see Numeric#numerator、Integer#denominator、Float#denominator、Rational#denominator、Complex#denominator

Numeric#div(other) -> Integer (90040.0)

self を other で割った整数の商 q を返します。

self を other で割った整数の商 q を返します。

ここで、商 q と余り r は、それぞれ

* self == other * q + r

* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
商に対応する余りは Numeric#modulo で求められます。
div はメソッド / を呼びだし、floorを取ることで計算されます。

メソッド / の定義はサブクラスごとの定義を用います。

@param other 自身を割る数を...

絞り込み条件を変える

Numeric#eql?(other) -> bool (90040.0)

自身と other のクラスが等しくかつ == メソッドで比較して等しい場合に true を返します。 そうでない場合に false を返します。

自身と other のクラスが等しくかつ == メソッドで比較して等しい場合に true を返します。
そうでない場合に false を返します。

Numeric のサブクラスは、eql? で比較して等しい数値同士が同じハッシュ値を返すように
hash メソッドを適切に定義する必要があります。

@param other 自身と比較したい数値を指定します。

//emlist[例][ruby]{
p 1.eql?(1) #=> true
p 1.eql?(1.0) #=> false
p 1 == 1.0 #=> true
//}

@see Object#equal?, ...

Numeric#negative? -> bool (90040.0)

self が 0 未満の場合に true を返します。そうでない場合に false を返します。

self が 0 未満の場合に true を返します。そうでない場合に false を返します。

//emlist[例][ruby]{
-1.negative? # => true
0.negative? # => false
1.negative? # => false
//}

@see Numeric#positive?

Numeric#nonzero? -> self | nil (90040.0)

自身がゼロの時 nil を返し、非ゼロの時 self を返します。

自身がゼロの時 nil を返し、非ゼロの時 self を返します。

//emlist[例][ruby]{
p 10.nonzero? #=> 10
p 0.nonzero? #=> nil
p 0.0.nonzero? #=> nil
p Rational(0, 2).nonzero? #=> nil
//}

非ゼロの時に self を返すため、自身が 0 の時に他の処理をさせたい場合に以
下のように記述する事もできます。

//emlist[例][ruby]{
a = %w( z Bb bB bb BB a...

Numeric#numerator -> Integer (90040.0)

自身を Rational に変換した時の分子を返します。

自身を Rational に変換した時の分子を返します。

@return 分子を返します。


@see Numeric#denominator、Integer#numerator、Float#numerator、Rational#numerator、Complex#numerator

Numeric#phase -> 0 | Math::PI (90040.0)

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

//emlist[例][ruby]{
1.arg # => 0
-1.arg # => 3.141592653589793
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

@see Complex#arg

絞り込み条件を変える

Numeric#positive? -> bool (90040.0)

self が 0 より大きい場合に true を返します。そうでない場合に false を返します。

self が 0 より大きい場合に true を返します。そうでない場合に false を返します。

//emlist[例][ruby]{
1.positive? # => true
0.positive? # => false
-1.positive? # => false
//}

@see Numeric#negative?

Numeric#to_c -> Complex (90040.0)

自身を複素数 (Complex) に変換します。Complex(self, 0) を返します。

自身を複素数 (Complex) に変換します。Complex(self, 0) を返します。

//emlist[例][ruby]{
1.to_c # => (1+0i)
-1.to_c # => (-1+0i)
1.0.to_c # => (1.0+0i)
Rational(1, 2).to_c # => ((1/2)+0i)
//}

Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。

Numeric#zero? -> bool (90040.0)

自身がゼロの時、trueを返します。そうでない場合は false を返します。

自身がゼロの時、trueを返します。そうでない場合は false を返します。

//emlist[例][ruby]{
p 10.zero? #=> false
p 0.zero? #=> true
p 0.0.zero? #=> true
//}

@see Numeric#nonzero?

Numeric#+@ -> self (90004.0)

単項演算子の + です。 self を返します。

単項演算子の + です。
self を返します。

//emlist[例][ruby]{
+ 10 # => 10
+ (-10) # => -10
+ 0.1 # => 0.1
+ (3r) # => (3/1)
+ (1+3i) # => (1+3i)
//}

Numeric#i -> Complex (90004.0)

Complex(0, self) を返します。

Complex(0, self) を返します。

ただし、Complex オブジェクトでは利用できません。

//emlist[例][ruby]{
10.i # => (0+10i)
-10.i # => (0-10i)
(0.1).i # => (0+0.1i)
Rational(1, 2).i # => (0+(1/2)*i)
//}

絞り込み条件を変える

Numeric#step(by: 1, to: Float::INFINITY) -> Enumerator (90004.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(by: 1, to: Float::INFINITY) {|n| ... } -> self (90004.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(by:, to: -Float::INFINITY) -> Enumerator (90004.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(by:, to: -Float::INFINITY) {|n| ... } -> self (90004.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#step(limit, step = 1) -> Enumerator (90004.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

絞り込み条件を変える

Numeric#step(limit, step = 1) {|n| ... } -> self (90004.0)

self からはじめ step を足しながら limit を越える 前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども 指定できます。

self からはじめ step を足しながら limit を越える
前までブロックを繰り返します。step は負の数も指定できます。また、limit や step には Float なども
指定できます。

@param limit ループの上限あるいは下限を数値で指定します。step に負の数が指定された場合は、
下限として解釈されます。

@param step 各ステップの大きさを数値で指定します。負の数を指定することもできます。

@param to 引数limitと同じですが、省略した場合はキーワード引数byが正の
数であれば Float::INF...

Numeric#to_int -> Integer (90004.0)

self.to_i と同じです。

self.to_i と同じです。

//emlist[例][ruby]{
(2+0i).to_int # => 2
Rational(3).to_int # => 3
//}

Complex#rect -> [Numeric, Numeric] (1264.0)

実部と虚部を配列にして返します。

実部と虚部を配列にして返します。

//emlist[例][ruby]{
Complex(3).rect # => [3, 0]
Complex(3.5).rect # => [3.5, 0]
Complex(3, 2).rect # => [3, 2]
//}

@see Numeric#rect

Complex#rectangular -> [Numeric, Numeric] (1264.0)

実部と虚部を配列にして返します。

実部と虚部を配列にして返します。

//emlist[例][ruby]{
Complex(3).rect # => [3, 0]
Complex(3.5).rect # => [3.5, 0]
Complex(3, 2).rect # => [3, 2]
//}

@see Numeric#rect

Complex#polar -> [Numeric, Numeric] (1252.0)

自身の絶対値と偏角を配列にして返します。

自身の絶対値と偏角を配列にして返します。

//emlist[例][ruby]{
Complex.polar(1, 2).polar # => [1, 2]
//}

@see Numeric#polar

絞り込み条件を変える

Float#divmod(other) -> [Numeric] (682.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

self を other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。

ここで、商 q と余り r は、

* self == other * q + r

* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
このメソッドは、メソッド / と % によって定義されています。

@param other 自身を割る数を指定します。

//emli...

Integer#fdiv(other) -> Numeric (682.0)

self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。

self を other で割った商を Float で返します。
ただし Complex が関わる場合は例外です。
その場合も成分は Float になります。

@param other self を割る数を指定します。

例:

654321.fdiv(13731) # => 47.652829364212366
654321.fdiv(13731.24) # => 47.65199646936475

-1234567890987654321.fdiv(13731) # => -89910996357705.52
-1234567890987654...

Complex#imag -> Numeric (652.0)

自身の虚部を返します。

自身の虚部を返します。

//emlist[例][ruby]{
Complex(3, 2).imag # => 2
//}

@see Numeric#imag

Complex#imaginary -> Numeric (652.0)

自身の虚部を返します。

自身の虚部を返します。

//emlist[例][ruby]{
Complex(3, 2).imag # => 2
//}

@see Numeric#imag

Bignum#divmod(other) -> [Integer, Numeric] (646.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

@param other self を割る数。

@see Numeric#divmod

絞り込み条件を変える

Fixnum#divmod(other) -> [Integer, Numeric] (646.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

@param other self を割る数。

@see Numeric#divmod

Integer#/(other) -> Numeric (646.0)

除算の算術演算子。

除算の算術演算子。

other が Integer の場合、整商(整数の商)を Integer で返します。
普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。

other が Float、Rational、Complex の場合、普通の商を other と
同じクラスのインスタンスで返します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

//emlist[例][ruby]{
7 / 2 # => 3
7 / -2 # => -4
7 / 2.0 # => 3.5
7 / Rational(2, 1) # => (7/2)
7...

Integer#divmod(other) -> [Integer, Numeric] (646.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

@param other self を割る数。

@see Numeric#divmod

Integer#remainder(other) -> Numeric (646.0)

self を other で割った余り r を返します。

self を other で割った余り r を返します。

r の符号は self と同じになります。

@param other self を割る数。

//emlist[][ruby]{
5.remainder(3) # => 2
-5.remainder(3) # => -2
5.remainder(-3) # => 2
-5.remainder(-3) # => -2

-1234567890987654321.remainder(13731) # => -6966
-1234567890987654321.remainder(13731.24) #...

Complex#abs -> Numeric (616.0)

自身の絶対値を返します。

自身の絶対値を返します。

以下の計算の結果を Float オブジェクトで返します。

sqrt(self.real ** 2 + self.imag ** 2)

//emlist[例][ruby]{
Complex(1, 2).abs # => 2.23606797749979
Complex(3, 4).abs # => 5.0
Complex('1/2', '1/2').abs # => 0.7071067811865476
//}

@see Complex#abs2

絞り込み条件を変える

Complex#magnitude -> Numeric (616.0)

自身の絶対値を返します。

自身の絶対値を返します。

以下の計算の結果を Float オブジェクトで返します。

sqrt(self.real ** 2 + self.imag ** 2)

//emlist[例][ruby]{
Complex(1, 2).abs # => 2.23606797749979
Complex(3, 4).abs # => 5.0
Complex('1/2', '1/2').abs # => 0.7071067811865476
//}

@see Complex#abs2

Integer#%(other) -> Numeric (616.0)

算術演算子。剰余を計算します。

算術演算子。剰余を計算します。

//emlist[][ruby]{
13 % 4 # => 1
13 % -4 # => -3
-13 % 4 # => 3
-13 % -4 # => -1
//}

@param other 二項演算の右側の引数(対象)
@return 計算結果

Integer#**(other) -> Numeric (616.0)

算術演算子。冪(べき乗)を計算します。

算術演算子。冪(べき乗)を計算します。

@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。

//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
...

Integer#modulo(other) -> Numeric (616.0)

算術演算子。剰余を計算します。

算術演算子。剰余を計算します。

//emlist[][ruby]{
13 % 4 # => 1
13 % -4 # => -3
-13 % 4 # => 3
-13 % -4 # => -1
//}

@param other 二項演算の右側の引数(対象)
@return 計算結果

Integer#pow(other) -> Numeric (616.0)

算術演算子。冪(べき乗)を計算します。

算術演算子。冪(べき乗)を計算します。

@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。

//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
...

絞り込み条件を変える

Matrix#det -> Numeric (616.0)

行列式 (determinant) の値を返します。

行列式 (determinant) の値を返します。

Float を使用すると、精度が不足するため、誤った結果が生じる可能性があることに注意してください。
代わりに、Rational や BigDecimal などの正確なオブジェクトを使用することを検討してください。

@raise ExceptionForMatrix::ErrDimensionMismatch 正方行列でない場合に発生します

//emlist[例][ruby]{
require 'matrix'

p Matrix[[2, 1], [-1, 2]].det #=> 5
p Matrix[[2.0, 1...

Matrix#determinant -> Numeric (616.0)

行列式 (determinant) の値を返します。

行列式 (determinant) の値を返します。

Float を使用すると、精度が不足するため、誤った結果が生じる可能性があることに注意してください。
代わりに、Rational や BigDecimal などの正確なオブジェクトを使用することを検討してください。

@raise ExceptionForMatrix::ErrDimensionMismatch 正方行列でない場合に発生します

//emlist[例][ruby]{
require 'matrix'

p Matrix[[2, 1], [-1, 2]].det #=> 5
p Matrix[[2.0, 1...

Matrix::LUPDecomposition#det -> Numeric (616.0)

元の行列の行列式の値を返します。 LUP 分解の結果を利用して計算します。

元の行列の行列式の値を返します。
LUP 分解の結果を利用して計算します。

@see Matrix#determinant

Matrix::LUPDecomposition#determinant -> Numeric (616.0)

元の行列の行列式の値を返します。 LUP 分解の結果を利用して計算します。

元の行列の行列式の値を返します。
LUP 分解の結果を利用して計算します。

@see Matrix#determinant

Complex#abs2 -> Numeric (610.0)

自身の絶対値の 2 乗を返します。

自身の絶対値の 2 乗を返します。

以下の計算の結果を返します。

self.real ** 2 + self.imag ** 2

//emlist[例][ruby]{
Complex(1, 1).abs2 # => 2
Complex(1.0, 1.0).abs2 # => 2.0
Complex('1/2', '1/2').abs2 # => (1/2)
//}

@see Complex#abs

絞り込み条件を変える

Complex#real -> Numeric (610.0)

自身の実部を返します。

自身の実部を返します。

//emlist[例][ruby]{
Complex(3, 2).real # => 3
//}

Integer#*(other) -> Numeric (610.0)

算術演算子。積を計算します。

算術演算子。積を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

//emlist[][ruby]{
2 * 3 # => 6
//}

Integer#+(other) -> Numeric (610.0)

算術演算子。和を計算します。

算術演算子。和を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

//emlist[][ruby]{
3 + 4 # => 7
//}

Integer#-(other) -> Numeric (610.0)

算術演算子。差を計算します。

算術演算子。差を計算します。

@param other 二項演算の右側の引数(対象)
@return 計算結果

//emlist[][ruby]{
4 - 1 #=> 3
//}

Net::FTP#open_timeout -> Numeric|nil (610.0)

接続時のタイムアウトの秒数を返します。

接続時のタイムアウトの秒数を返します。

制御用コネクションとデータ転送用コネクションの
両方を開くときの共通のタイムアウト時間です。

この秒数たってもコネクションが
開かなければ例外 Net::OpenTimeout を発生します。
整数以外での浮動小数点数や分数を指定することができます。
デフォルトは nil(タイムアウトしない)です。

@see Net::HTTP#read_timeout, Net::HTTP#open_timeout=

絞り込み条件を変える

Net::FTP#read_timeout -> Numeric|nil (610.0)

読み込み一回でブロックしてよい最大秒数 を返します。

読み込み一回でブロックしてよい最大秒数
を返します。

この秒数たっても読みこめなければ例外 Net::ReadTimeout
を発生します。整数以外での浮動小数点数や分数を指定することができます。
デフォルトは 60 (秒)です。

@see Net::HTTP#open_timeout, Net::HTTP#read_timeout=

Rational#**(rhs) -> Numeric (610.0)

@todo

@todo

self のべき乗を返します。 Rational になるようであれば Rational で返します。

Float#to_i -> Integer (112.0)

小数点以下を切り捨てて値を整数に変換します。

小数点以下を切り捨てて値を整数に変換します。


//emlist[例][ruby]{
2.8.truncate # => 2
(-2.8).truncate # => -2
//}

@see Numeric#round, Numeric#ceil, Numeric#floor

Float#truncate -> Integer (112.0)

小数点以下を切り捨てて値を整数に変換します。

小数点以下を切り捨てて値を整数に変換します。


//emlist[例][ruby]{
2.8.truncate # => 2
(-2.8).truncate # => -2
//}

@see Numeric#round, Numeric#ceil, Numeric#floor

Kernel#check_signedness(type, headers = nil, opts = nil) -> "signed" | "unsigned" | nil (100.0)

Returns the signedness of the given +type+. You may optionally specify additional +headers+ to search in for the +type+. If the +type+ is found and is a numeric type, a macro is passed as a preprocessor constant to the compiler using the +type+ name, in uppercase, prepended with 'SIGNEDNESS_OF_', followed by the +type+ name, followed by '=X' where 'X' is positive integer if the +type+ is unsigned, or negative integer if the +type+ is signed. For example, if size_t is defined as unsigned, then check_signedness('size_t') would returned +1 and the SIGNEDNESS_OF_SIZE_T=+1 preprocessor macro would be passed to the compiler, and SIGNEDNESS_OF_INT=-1 if check_signedness('int') is done.

Returns the signedness of the given +type+. You may optionally
specify additional +headers+ to search in for the +type+.

If the +type+ is found and is a numeric type, a macro is passed as a
preprocessor constant to the compiler using the +type+ name, in
uppercase, prepended with 'SIGNEDNESS...

絞り込み条件を変える

Kernel#check_signedness(type, headers = nil, opts = nil) { ... } -> "signed" | "unsigned" | nil (100.0)

Returns the signedness of the given +type+. You may optionally specify additional +headers+ to search in for the +type+. If the +type+ is found and is a numeric type, a macro is passed as a preprocessor constant to the compiler using the +type+ name, in uppercase, prepended with 'SIGNEDNESS_OF_', followed by the +type+ name, followed by '=X' where 'X' is positive integer if the +type+ is unsigned, or negative integer if the +type+ is signed. For example, if size_t is defined as unsigned, then check_signedness('size_t') would returned +1 and the SIGNEDNESS_OF_SIZE_T=+1 preprocessor macro would be passed to the compiler, and SIGNEDNESS_OF_INT=-1 if check_signedness('int') is done.

Returns the signedness of the given +type+. You may optionally
specify additional +headers+ to search in for the +type+.

If the +type+ is found and is a numeric type, a macro is passed as a
preprocessor constant to the compiler using the +type+ name, in
uppercase, prepended with 'SIGNEDNESS...

Matrix#real? -> bool (100.0)

行列の全要素が実(Numeric#real?)であれば true を返します。

行列の全要素が実(Numeric#real?)であれば true を返します。

Complexオブジェクトを要素に持つ場合は虚部が0でも偽を返します。

//emlist[例][ruby]{
require 'matrix'
Matrix[[1, 0], [0, 1]].real? # => true
Matrix[[Complex(0, 1), 0], [0, 1]].real? # => false
# 要素が実数であっても Complex オブジェクトなら偽を返す。
Matrix[[Complex(1, 0), 0], [0, 1]].real? # => false
//}

Range#size -> Integer | Float::INFINITY | nil (100.0)

範囲内の要素数を返します。始端、終端のいずれかのオブジェクトが Numeric のサブクラスのオブジェクトではない場合には nil を返します。

範囲内の要素数を返します。始端、終端のいずれかのオブジェクトが
Numeric のサブクラスのオブジェクトではない場合には nil を返します。

//emlist[例][ruby]{
(10..20).size # => 11
("a".."z").size # => nil
(-Float::INFINITY..Float::INFINITY).size # => Infinity
//}

BigDecimal#%(n) -> BigDecimal (76.0)

self を n で割った余りを返します。

self を n で割った余りを返します。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
( x % 3).to_i # => 1
(-x % 3).to_i # => 2
( x % -3).to_i # => -2
(-x % -3).to_i # => -1
//}

戻り値は n と同じ符号になります。これは BigDecimal#remainder とは
異なる点に注意してください。詳細は Numeric#%、
Numeric#re...

BigDecimal#modulo(n) -> BigDecimal (76.0)

self を n で割った余りを返します。

self を n で割った余りを返します。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
( x % 3).to_i # => 1
(-x % 3).to_i # => 2
( x % -3).to_i # => -2
(-x % -3).to_i # => -1
//}

戻り値は n と同じ符号になります。これは BigDecimal#remainder とは
異なる点に注意してください。詳細は Numeric#%、
Numeric#re...

絞り込み条件を変える

BigDecimal#remainder(n) -> BigDecimal (76.0)

self を n で割った余りを返します。

self を n で割った余りを返します。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
x.remainder(3).to_i # => 1
(-x).remainder(3).to_i # => -1
x.remainder(-3).to_i # => 1
(-x).remainder(-3).to_i # => -1
//}

戻り値は self と同じ符号になります。これは BigDecimal#% とは異な
る点に注意し...

Float#floor -> Integer (76.0)

自身と等しいかより小さな整数のうち最大のものを返します。

自身と等しいかより小さな整数のうち最大のものを返します。


//emlist[例][ruby]{
1.2.floor # => 1
2.0.floor # => 2
(-1.2).floor # => -2
(-2.0).floor # => -2
//}

@see Numeric#ceil, Numeric#round, Float#truncate

OpenSSL::BN#coerce(other) -> Array (76.0)

自身と other が同じクラスになるよう、自身か other を変換し [other, self] という配列にして返します。

自身と other が同じクラスになるよう、自身か other を変換し
[other, self] という配列にして返します。

基本的に other が整数のときに、自身を Integer のオブジェクトに
変換して [other, 変換後オブジェクト] にして返します。
それ以外の場合は例外 TypeError を発生させます。

//emlist[][ruby]{
require 'openssl'
p 1.to_bn.coerce(2) # => [2, 1]
//}

@param other 変換の基準となるオブジェクト
@raise TypeError 変換に失敗した場合に発...

BigDecimal#/(other) -> BigDecimal (40.0)

商を計算します。

商を計算します。

@param other self を割る数を指定します。

詳細は Numeric#quo を参照して下さい。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

BigDecimal#coerce(other) -> Array (40.0)

self と other が同じクラスになるよう、self か other を変換し [other, self] という配列にして返します。

self と other が同じクラスになるよう、self か other を変換し [other,
self] という配列にして返します。

@param other 比較または変換するオブジェクト

BigDecimal#coerce は Ruby における強制型変換のための機能です。
BigDecimal オブジェクトとその他のオブジェクト間の各種の計算は
BigDecimal#coerce の結果を元に行われます。

//emlist[][ruby]{
require "bigdecimal"
a = BigDecimal("1.0")
b = a / 2.0 # => 0.5e0
...

絞り込み条件を変える

BigDecimal#div(other) -> BigDecimal (40.0)

商を計算します。

商を計算します。

@param other self を割る数を指定します。

詳細は Numeric#quo を参照して下さい。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

BigDecimal#quo(other) -> BigDecimal (40.0)

商を計算します。

商を計算します。

@param other self を割る数を指定します。

詳細は Numeric#quo を参照して下さい。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

Bignum#[](nth) -> Fixnum (40.0)

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。

@param nth 何ビット目を指すかの数値
@return 1 か 0

self[nth]=bit (つまりビットの修正) がないのは、Numeric 関連クラスが
immutable であるためです。

Bignum#fdiv(other) -> Float | Complex (40.0)

self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。

self を other で割った商を Float で返します。
ただし Complex が関わる場合は例外です。
その場合も成分は Float になります。

@param other self を割る数を指定します。

@see Numeric#quo

Bignum#remainder(other) -> Fixnum | Bignum | Float (40.0)

self を other で割った余り r を返します。

self を other で割った余り r を返します。

r の符号は self と同じになります。

@param other self を割る数。

@see Bignum#divmod, Bignum#modulo, Numeric#modulo

絞り込み条件を変える

Complex#/(other) -> Complex (40.0)

商を計算します。

商を計算します。

@param other 自身を割る数

//emlist[例][ruby]{
Complex(10.0) / 3 # => (3.3333333333333335+(0/1)*i)
Complex(10) / 3 # => ((10/3)+(0/1)*i)
//}

@see Numeric#quo

Complex#angle -> Float (40.0)

自身の偏角を[-π,π]の範囲で返します。

自身の偏角を[-π,π]の範囲で返します。

//emlist[例][ruby]{
Complex.polar(3, Math::PI/2).arg # => 1.5707963267948966
//}

非正の実軸付近での挙動に注意してください。以下の例のように虚部が 0.0 と
-0.0 では値が変わります。

//emlist[例][ruby]{
Complex(-1, 0).arg #=> 3.141592653589793
Complex(-1, -0).arg #=> 3.141592653589793
Complex(-1...

Complex#arg -> Float (40.0)

自身の偏角を[-π,π]の範囲で返します。

自身の偏角を[-π,π]の範囲で返します。

//emlist[例][ruby]{
Complex.polar(3, Math::PI/2).arg # => 1.5707963267948966
//}

非正の実軸付近での挙動に注意してください。以下の例のように虚部が 0.0 と
-0.0 では値が変わります。

//emlist[例][ruby]{
Complex(-1, 0).arg #=> 3.141592653589793
Complex(-1, -0).arg #=> 3.141592653589793
Complex(-1...

Complex#phase -> Float (40.0)

自身の偏角を[-π,π]の範囲で返します。

自身の偏角を[-π,π]の範囲で返します。

//emlist[例][ruby]{
Complex.polar(3, Math::PI/2).arg # => 1.5707963267948966
//}

非正の実軸付近での挙動に注意してください。以下の例のように虚部が 0.0 と
-0.0 では値が変わります。

//emlist[例][ruby]{
Complex(-1, 0).arg #=> 3.141592653589793
Complex(-1, -0).arg #=> 3.141592653589793
Complex(-1...

Complex#quo(other) -> Complex (40.0)

商を計算します。

商を計算します。

@param other 自身を割る数

//emlist[例][ruby]{
Complex(10.0) / 3 # => (3.3333333333333335+(0/1)*i)
Complex(10) / 3 # => ((10/3)+(0/1)*i)
//}

@see Numeric#quo

絞り込み条件を変える

<< 1 2 > >>