るりまサーチ (Ruby 2.3.0)

最速Rubyリファレンスマニュアル検索!
7564件ヒット [301-400件を表示] (0.440秒)
トップページ > バージョン:2.3.0[x] > 種類:インスタンスメソッド[x]

ライブラリ

クラス

モジュール

キーワード

検索結果

<< < ... 2 3 4 5 6 ... > >>

BasicObject#instance_exec(*args) {|*vars| ... } -> object (4.0)

与えられたブロックをレシーバのコンテキストで実行します。

与えられたブロックをレシーバのコンテキストで実行します。

ブロック実行中は、 self がレシーバのコンテキストになるので
レシーバの持つインスタンス変数にアクセスすることができます。

@param args ブロックパラメータに渡す値です。

//emlist[例][ruby]{
class KlassWithSecret
def initialize
@secret = 99
end
end
k = KlassWithSecret.new
# 以下で x には 5 が渡される
k.instance_exec(5) {|x| @secret + x } #=> 10...

BasicObject#method_missing(name, *args) -> object (4.0)

呼びだされたメソッドが定義されていなかった時、Rubyインタプリタがこのメソッド を呼び出します。

呼びだされたメソッドが定義されていなかった時、Rubyインタプリタがこのメソッド
を呼び出します。

呼び出しに失敗したメソッドの名前 (Symbol) が name に
その時の引数が第二引数以降に渡されます。

デフォルトではこのメソッドは例外 NoMethodError を発生させます。


@param name 未定義メソッドの名前(シンボル)です。
@param args 未定義メソッドに渡された引数です。
@return ユーザー定義の method_missing メソッドの返り値が未定義メソッドの返り値で
あるかのように見えます。

//emlist[例][ruby]{...

BasicObject#singleton_method_added(name) -> object (4.0)

特異メソッドが追加された時にインタプリタから呼び出されます。

特異メソッドが追加された時にインタプリタから呼び出されます。

通常のメソッドの追加に対するフックには
Module#method_addedを使います。

@param name 追加されたメソッド名が Symbol で渡されます。

//emlist[例][ruby]{
class Foo
def singleton_method_added(name)
puts "singleton method \"#{name}\" was added"
end
end

obj = Foo.new
def obj.foo
end

#=> singleton method "fo...

BasicObject#singleton_method_removed(name) -> object (4.0)

特異メソッドが Module#remove_method に より削除された時にインタプリタから呼び出されます。

特異メソッドが Module#remove_method に
より削除された時にインタプリタから呼び出されます。

通常のメソッドの削除に対するフックには
Module#method_removedを使います。

@param name 削除されたメソッド名が Symbol で渡されます。

//emlist[例][ruby]{
class Foo
def singleton_method_removed(name)
puts "singleton method \"#{name}\" was removed"
end
end

obj = Foo.new
def obj.f...

BasicObject#singleton_method_undefined(name) -> object (4.0)

特異メソッドが Module#undef_method または undef により未定義にされた時にインタプリタから呼び出されます。

特異メソッドが Module#undef_method または
undef により未定義にされた時にインタプリタから呼び出されます。

通常のメソッドの未定義に対するフックには
Module#method_undefined を使います。

@param name 未定義にされたメソッド名が Symbol で渡されます。

//emlist[例][ruby]{
class Foo
def singleton_method_undefined(name)
puts "singleton method \"#{name}\" was undefined"
end
end

obj...

絞り込み条件を変える

BasicSocket#connect_address -> Addrinfo (4.0)

ローカルマシン内で接続するのに適当なアドレスを Addrinfo オブジェクトで返します。

ローカルマシン内で接続するのに適当なアドレスを Addrinfo
オブジェクトで返します。

BasicSocket#local_address の返り値
以下の点を除いては同じものを返します。
* IPv4 の不定アドレス(0.0.0.0) は IPv4 のループバックアドレス(127.0.0.1)
に置換される
* IPv6 の不定アドレス(::) は IPv6 のループバックアドレス(::1)
に置換される

BasicSocket#local_address が接続先として不適なアドレスを返す場合は
例外 SocketError が発生します。

requ...

BasicSocket#do_not_reverse_lookup -> bool (4.0)

ソケットごとのアドレスからホスト名への逆引きの設定を返します。

ソケットごとのアドレスからホスト名への逆引きの設定を返します。

真ならアドレスからホスト名への逆引きを行いません。

初期値はソケットを生成したときの
BasicSocket.do_not_reverse_lookup の値になります。

require 'socket'

BasicSocket.do_not_reverse_lookup = false
TCPSocket.open("www.ruby-lang.org", 80) {|sock|
p sock.do_not_reverse_lookup # => false
}
BasicSock...

BasicSocket#do_not_reverse_lookup=(bool) (4.0)

アドレスからホスト名への逆引きの設定をソケットごとに設定します。

アドレスからホスト名への逆引きの設定をソケットごとに設定します。

@param bool この値が真ならアドレスからホスト名への逆引きを行わなくなります。
@see BasicSocket#do_not_reverse_lookup

BasicSocket#getpeereid -> [Integer, Integer] (4.0)

Unix ドメインソケットにおいて接続相手の euid と egid を 返します。

Unix ドメインソケットにおいて接続相手の euid と egid を
返します。

配列の最初の要素が euid, 2番目の要素が egid です。

ソケットが Unix ドメインソケットでない場合の返り値は
不定です。

require 'socket'

Socket.unix_server_loop("/tmp/sock") {|s|
begin
euid, egid = s.getpeereid

# Check the connected client is myself or not.
next if euid ...

BasicSocket#getpeername -> String (4.0)

接続の相手先のソケットの情報を取得します。sockaddr 構造体をパッ クした文字列を返します。getpeername(2) を参照してください。

接続の相手先のソケットの情報を取得します。sockaddr 構造体をパッ
クした文字列を返します。getpeername(2) を参照してください。

例:

require 'socket'

serv = TCPServer.open("", 0)
c = TCPSocket.open(*Socket.unpack_sockaddr_in(serv.getsockname).reverse)
s = serv.accept
addr = c.getpeername
p addr #=> "\002\000\267\214\177\000\000\001\...

絞り込み条件を変える

BasicSocket#getsockname -> String (4.0)

ソケットの情報を取得します。sockaddr 構造体をパックした 文字列を返します。getsockname(2) を参照してください。

ソケットの情報を取得します。sockaddr 構造体をパックした
文字列を返します。getsockname(2) を参照してください。

例:

require 'socket'

serv = TCPServer.open("", 0)
p serv.getsockname #=> "\002\000\236C\000\000\000\000\000\000\000\000\000\000\000\000"
p Socket.unpack_sockaddr_in(serv.getsockname) #=> [40515, "0.0.0.0"]
c ...

BasicSocket#getsockopt(level, optname) -> Socket::Option (4.0)

ソケットのオプションを取得します。getsockopt(2) を参照してください。 取得したオプションのデータを Socket::Option で返します。

ソケットのオプションを取得します。getsockopt(2)
を参照してください。
取得したオプションのデータを Socket::Option で返します。

level, optname には Socket::SOL_SOCKET や Socket::SO_REUSEADDR
といった整数値の他、文字列("SOL_SOCKET", prefixなしの "SOCKET")や
シンボル(:SO_REUSEADDR, :REUSEADDR)を用いることができます。

@param level getsockopt(2) の 第二引数のlevel
@param optname gets...

BasicSocket#local_address -> Addrinfo (4.0)

getsockname(2) で得られたローカルアドレス情報を Addrinfo オブジェクトとして返します。

getsockname(2) で得られたローカルアドレス情報を
Addrinfo オブジェクトとして返します。

返されたオブジェクトの Addrinfo#protocol は 0 を
返すことに注意してください。

require 'socket'

TCPSocket.open("www.ruby-lang.org", 80) {|s|
p s.local_address #=> #<Addrinfo: 192.168.0.129:36873 TCP>
}

TCPServer.open("127.0.0.1", 1512) {|serv|
p serv...

BasicSocket#recv(maxlen, flags = 0) -> String (4.0)

ソケットからデータを受け取り、文字列として返します。 maxlen は受け取る最大の長さを指定します。 flags については recv(2) を参照してください。flags の デフォルト値は 0 です。flags の指定に必要な定数は Socket クラスで定義されています。(例: Socket::MSG_PEEK)

ソケットからデータを受け取り、文字列として返します。
maxlen は受け取る最大の長さを指定します。
flags については recv(2) を参照してください。flags の
デフォルト値は 0 です。flags の指定に必要な定数は
Socket クラスで定義されています。(例: Socket::MSG_PEEK)

内部で呼び出す recv(2) が 0 を返した場合、このメソッドは "" を返します。
この意味はソケットによって異なります。
たとえば TCP では EOF を意味しますし、
UDP では空のパケットを読み込んだことを意味します。

@param maxlen 受け取...

BasicSocket#recv_nonblock(maxlen, flags = 0) -> String (4.0)

ソケットをノンブロッキングモードに設定した後、 recvfrom(2) でソケットからデータを受け取ります。

ソケットをノンブロッキングモードに設定した後、
recvfrom(2) でソケットからデータを受け取ります。

引数、返り値は BasicSocket#recv と同じです。

recvfrom(2) がエラーになった場合、
EAGAIN, EINTR を含め例外 Errno::EXXX が発生します。

@param maxlen 受け取る文字列の最大の長さを指定します。

@param flags recv(2) を参照してください。

@raise IOError

@raise Errno::EXXX recvfrom(2) がエラーになった場合などに発生します。

絞り込み条件を変える

BasicSocket#recvmsg(maxmesglen=nil, flags=0, maxcontrollen=nil, opts={}) -> [String, Addrinfo, Integer, *Socket::AncillaryData] (4.0)

recvmsg(2) を用いてメッセージを受け取ります。

recvmsg(2) を用いてメッセージを受け取ります。

このメソッドはブロックします。ノンブロッキング方式で通信したい
場合は BasicSocket#recvmsg_nonblock を用います。

maxmesglen, maxcontrollen で受け取るメッセージおよび補助データ
(Socket::AncillaryData)の最大長をバイト単位で指定します。
省略した場合は必要なだけ内部バッファを拡大して
データが切れないようにします。

flags では Socket::MSG_* という名前の定数の biwsise OR を取った
ものを渡します。

opts にはその他...

BasicSocket#recvmsg_nonblock(maxmesglen=nil, flags=0, maxcontrollen=nil, opts={}) -> [String, Addrinfo, Integer, *Socket::AncillaryData] (4.0)

recvmsg(2) を用いてノンブロッキング方式でメッセージを受け取ります。

recvmsg(2) を用いてノンブロッキング方式でメッセージを受け取ります。

ブロッキングの有無以外は BasicSocket#recvmsg と同じです。
詳しくはそちらを参照してください。

@param maxmesglen 受け取るメッセージの最大長
@param flags フラグ
@param maxcontrollen 受け取る補助データの最大長
@param opts ハッシュオプション

BasicSocket#remote_address -> Addrinfo (4.0)

getpeername(2) で得られたリモートアドレス情報を Addrinfo オブジェクトとして返します。

getpeername(2) で得られたリモートアドレス情報を
Addrinfo オブジェクトとして返します。

返されたオブジェクトの Addrinfo#protocol は 0 を
返すことに注意してください。

require 'socket'

TCPSocket.open("www.ruby-lang.org", 80) {|s|
p s.remote_address #=> #<Addrinfo: 221.186.184.68:80 TCP>
}

TCPServer.open("127.0.0.1", 1728) {|serv|
c = TCP...

BasicSocket#send(mesg, flags, dest_sockaddr = nil) -> Integer (4.0)

ソケットを介してデータを送ります。flags に関しては send(2) を参照してください。connect していないソケット に対しては送り先である dest_sockaddr を指定する必要があります。実際に送っ たデータの長さを返します。

ソケットを介してデータを送ります。flags に関しては
send(2) を参照してください。connect していないソケット
に対しては送り先である dest_sockaddr を指定する必要があります。実際に送っ
たデータの長さを返します。

dest_sockaddr には「ソケットアドレス構造体を pack した文字列」
を指定します。

データの送信に失敗した場合は例外 Errno::EXXX が発生します。

@param mesg 送信するデータを文字列で指定します。

@param flags send(2) の flags を参照してください。

@...

BasicSocket#sendmsg(mesg, flags=0, dest_sockaddr=nil, *controls) -> Integer (4.0)

sendmsg(2) を用いてメッセージを送ります。

sendmsg(2) を用いてメッセージを送ります。

このメソッドはブロックします。ノンブロッキング方式で通信したい
場合は BasicSocket#sendmsg_nonblock を用います。

ソケットが connection-less の場合は dest_sockaddr で
通信先のアドレスを指定しなければなりません。Socket.sockaddr_in
の返り値や Addrinfo オブジェクトを引数として渡すことができます。

controls には 補助データ(ancillary data)を渡します。
Socket::AncillaryData のインスタンスや
3要素(c...

絞り込み条件を変える

BasicSocket#sendmsg_nonblock(mesg, flags=0, dest_sockaddr=nil, *controls) -> Integer (4.0)

sendmsg(2) を用いてノンブロッキング方式でメッセージを送ります。

sendmsg(2) を用いてノンブロッキング方式でメッセージを送ります。

詳しくは BasicSocket#sendmsg を見てください。

@return 送ったバイト数
@param mesg メッセージ文字列
@param flags フラグ(Socket::MSG_* という定数の bitwise OR を取ったもの)
@param dest_sockaddr 通信先のアドレス
@param controls 補助データの配列
@see BasicSocket#sendmsg

BasicSocket#setsockopt(level, optname, optval) -> 0 (4.0)

ソケットのオプションを設定します。setsockopt(2) を参照してください。

ソケットのオプションを設定します。setsockopt(2)
を参照してください。

level, optname には Socket::SOL_SOCKET や Socket::SO_REUSEADDR
といった整数値の他、文字列("SOL_SOCKET", prefixなしの "SOCKET")や
シンボル(:SO_REUSEADDR, :REUSEADDR)を用いることができます。

optval には文字列、整数、真偽値(true or false)を渡すことができます。
文字列の場合には setsockopt(2) にはその文字列と
長さが渡されます。整数の場合はintへのポイン...

BasicSocket#setsockopt(socketoption) -> 0 (4.0)

ソケットのオプションを設定します。setsockopt(2) を参照してください。

ソケットのオプションを設定します。setsockopt(2)
を参照してください。

level, optname には Socket::SOL_SOCKET や Socket::SO_REUSEADDR
といった整数値の他、文字列("SOL_SOCKET", prefixなしの "SOCKET")や
シンボル(:SO_REUSEADDR, :REUSEADDR)を用いることができます。

optval には文字列、整数、真偽値(true or false)を渡すことができます。
文字列の場合には setsockopt(2) にはその文字列と
長さが渡されます。整数の場合はintへのポイン...

BasicSocket#shutdown(how = Socket::SHUT_RDWR) -> 0 (4.0)

ソケットの以降の接続を終了させます。

ソケットの以降の接続を終了させます。

how の値によって以下のように接続が終了します。

* Socket::SHUT_RD: それ以降の受信が拒否されます
* Socket::SHUT_WR: それ以降の送信が拒否されます
* Socket::SHUT_RDWR: それ以降の送信、受信ともに拒否されます

how を省略すると Socket::SHUT_RDWR を指定したことになります。
shutdown(2) を参照してください。

@param how 接続の終了の仕方を Socket::SHUT_RD, Socket::SHUT_WR, Socket::SHUT_R...

Benchmark::Job#item(label = "") { ... } -> self (4.0)

与えられたラベルとブロックをジョブリストに登録します。

与えられたラベルとブロックをジョブリストに登録します。

@param label ラベル

絞り込み条件を変える

Benchmark::Job#list -> [String, Proc] (4.0)

登録されているジョブのリストを返します。

登録されているジョブのリストを返します。

それぞれの要素は、ラベルとブロックからなる二要素の配列です。

Benchmark::Job#report(label = "") { ... } -> self (4.0)

与えられたラベルとブロックをジョブリストに登録します。

与えられたラベルとブロックをジョブリストに登録します。

@param label ラベル

Benchmark::Job#width -> Integer (4.0)

Benchmark::Job#list のサイズ。

Benchmark::Job#list のサイズ。

Benchmark::Report#item(label = "", *fmt) { ... } -> Benchmark::Tms (4.0)

ラベルと与えられたブロックの実行時間を標準出力に出力します。

ラベルと与えられたブロックの実行時間を標準出力に出力します。

出力のフォーマットは Benchmark::Tms#format が行います。

@param label ラベル
@param fmt 結果に出力したいオブジェクト

@see Benchmark::Tms#format

Benchmark::Report#list -> [Benchmark::Tms] (4.0)

Benchmark::Report#item 実行時に作成された Benchmark::Tms オ ブジェクトの一覧を返します。

Benchmark::Report#item 実行時に作成された Benchmark::Tms オ
ブジェクトの一覧を返します。

@see Benchmark::Report#item

絞り込み条件を変える

Benchmark::Report#report(label = "", *fmt) { ... } -> Benchmark::Tms (4.0)

ラベルと与えられたブロックの実行時間を標準出力に出力します。

ラベルと与えられたブロックの実行時間を標準出力に出力します。

出力のフォーマットは Benchmark::Tms#format が行います。

@param label ラベル
@param fmt 結果に出力したいオブジェクト

@see Benchmark::Tms#format

Benchmark::Tms#*(x) -> Benchmark::Tms (4.0)

self と x の乗算を計算します。

self と x の乗算を計算します。

@param x Benchmark::Tms のオブジェクトか Float に暗黙の変換ができるオブジェクトです。

@return 計算結果は新しい Benchmark::Tms オブジェクトです。

@see Benchmark::Tms#memberwise

Benchmark::Tms#+(x) -> Benchmark::Tms (4.0)

self と x の加算を計算します。

self と x の加算を計算します。

@param x Benchmark::Tms のオブジェクトか Float に暗黙の変換ができるオブジェクトです。

@return 計算結果は新しい Benchmark::Tms オブジェクトです。

@see Benchmark::Tms#memberwise

Benchmark::Tms#-(x) -> Benchmark::Tms (4.0)

self と x の減算を計算します。

self と x の減算を計算します。

@param x Benchmark::Tms のオブジェクトか Float に暗黙の変換ができるオブジェクトです。

@return 計算結果は新しい Benchmark::Tms オブジェクトです。

@see Benchmark::Tms#memberwise

Benchmark::Tms#/(x) -> Benchmark::Tms (4.0)

self と x の除算を計算します。

self と x の除算を計算します。

@param x Benchmark::Tms のオブジェクトか Float に暗黙の変換ができるオブジェクトです。

@return 計算結果は新しい Benchmark::Tms オブジェクトです。

@see Benchmark::Tms#memberwise

絞り込み条件を変える

Benchmark::Tms#add { ... } -> Benchmark::Tms (4.0)

与えられたブロックの実行時間を self に加算して 新しい Benchmark::Tms オブジェクトを生成して返します。

与えられたブロックの実行時間を self に加算して
新しい Benchmark::Tms オブジェクトを生成して返します。

@see Benchmark.#measure

Benchmark::Tms#add! { ... } -> self (4.0)

与えられたブロックの実行時間を self に加算して返します。

与えられたブロックの実行時間を self に加算して返します。

このメソッドは self を破壊的に変更します。

@see Benchmark.#measure

Benchmark::Tms#cstime -> Float (4.0)

子プロセスの System CPU time

子プロセスの System CPU time

Benchmark::Tms#cutime -> Float (4.0)

子プロセスの User CPU time

子プロセスの User CPU time

Benchmark::Tms#format(fmtstr = nil, *args) -> String (4.0)

self を指定されたフォーマットで整形して返します。

self を指定されたフォーマットで整形して返します。

このメソッドは Kernel.#format のようにオブジェクトを整形しますが、
以下の拡張を使用することができます。

: %u
user CPU time で置き換えられます。Benchmark::Tms#utime
: %y
system CPU time で置き換えられます(Mnemonic: y of "s*y*stem")。Benchmark::Tms#stime
: %U
子プロセスの user CPU time で置き換えられます。Benchmark::Tms#cutime
: %Y
子プロセスの s...

絞り込み条件を変える

Benchmark::Tms#label -> String (4.0)

ラベル。

ラベル。

Benchmark::Tms#memberwise(op, x) -> Benchmark::Tms (4.0)

Benchmark::Tms の四則演算を実行するために内部で使用されるメソッドです。

Benchmark::Tms の四則演算を実行するために内部で使用されるメソッドです。

@param op 演算子をシンボルで与えます。
@param x Benchmark::Tms のオブジェクトか Float に暗黙の変換ができるオブジェクトです。

@return 計算結果は新しい Benchmark::Tms オブジェクトです。

Benchmark::Tms#real -> Float (4.0)

実経過時間。

実経過時間。

Benchmark::Tms#stime -> Float (4.0)

System CPU time

System CPU time

Benchmark::Tms#to_a -> Array (4.0)

6 要素の配列を返します。

6 要素の配列を返します。

要素は以下の順番で配列に格納されています。
* ラベル
* user CPU time
* system CPU time,
* 子プロセスの user CPU time
* 子プロセスの system CPU time,
* 実経過時間

絞り込み条件を変える

Benchmark::Tms#to_s -> String (4.0)

引数を省略して Benchmark::Tms#format を呼び出すのと同じです。

引数を省略して Benchmark::Tms#format を呼び出すのと同じです。

Benchmark::Tms#total -> Float (4.0)

合計時間。(utime + stime + cutime + cstime)

合計時間。(utime + stime + cutime + cstime)

Benchmark::Tms#utime -> Float (4.0)

User CPU time

User CPU time

BigDecimal#%(n) -> BigDecimal (4.0)

self を n で割った余りを返します。

self を n で割った余りを返します。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
( x % 3).to_i # => 1
(-x % 3).to_i # => 2
( x % -3).to_i # => -2
(-x % -3).to_i # => -1
//}

戻り値は n と同じ符号になります。これは BigDecimal#remainder とは
異なる点に注意してください。詳細は Numeric#%、
Numeric#re...

BigDecimal#*(other) -> BigDecimal (4.0)

積を計算します。

積を計算します。

@param other self に掛ける数を指定します。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

絞り込み条件を変える

BigDecimal#**(n) -> BigDecimal (4.0)

self の n 乗を計算します。

self の n 乗を計算します。

戻り値の有効桁数は self の有効桁数の n 倍以上になります。

@param n selfを other 乗する数を指定します。

@param prec 有効桁数を整数で指定します。

BigDecimal#+(other) -> BigDecimal (4.0)

和を計算します。

和を計算します。

@param other self に足す数を指定します。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

BigDecimal#+@ -> self (4.0)

self を返します。

self を返します。

BigDecimal#-(other) -> BigDecimal (4.0)

差を計算します。

差を計算します。

@param other self から引く数を指定します。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

BigDecimal#-@ -> BigDecimal (4.0)

self の符号を反転させたものを返します。

self の符号を反転させたものを返します。

絞り込み条件を変える

BigDecimal#/(other) -> BigDecimal (4.0)

商を計算します。

商を計算します。

@param other self を割る数を指定します。

詳細は Numeric#quo を参照して下さい。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

BigDecimal#<(other) -> bool (4.0)

self が other より小さい場合に true を、そうでない場合に false を返しま す。

self が other より小さい場合に true を、そうでない場合に false を返しま
す。

BigDecimal#<=(other) -> bool (4.0)

self が other より小さいか等しい場合に true を、そうでない場合に false を返します。

self が other より小さいか等しい場合に true を、そうでない場合に false
を返します。

BigDecimal#<=>(other) -> -1 | 0 | 1 | nil (4.0)

self が other より大きい場合に 1 を、等しい場合に 0 を、小さい場合には -1 をそれぞれ返します。

self が other より大きい場合に 1 を、等しい場合に 0 を、小さい場合には
-1 をそれぞれ返します。

self と other が比較できない場合には nil を返します。

BigDecimal#==(other) -> bool (4.0)

self が other と等しい場合に true を、そうでない場合に false を返します。

self が other と等しい場合に true を、そうでない場合に false を返します。

それぞれの値は BigDecimal#coerce で変換して比較される場合があります。

//emlist[][ruby]{
require 'bigdecimal'
BigDecimal('1.0') == 1.0 # => true
//}

絞り込み条件を変える

BigDecimal#===(other) -> bool (4.0)

self が other と等しい場合に true を、そうでない場合に false を返します。

self が other と等しい場合に true を、そうでない場合に false を返します。

それぞれの値は BigDecimal#coerce で変換して比較される場合があります。

//emlist[][ruby]{
require 'bigdecimal'
BigDecimal('1.0') == 1.0 # => true
//}

BigDecimal#>(other) -> bool (4.0)

self が other より大きい場合に true を、そうでない場合に false を返しま す。

self が other より大きい場合に true を、そうでない場合に false を返しま
す。

BigDecimal#>=(other) -> bool (4.0)

self が other より大きいか等しい場合に true を、そうでない場合に false を返します。

self が other より大きいか等しい場合に true を、そうでない場合に false
を返します。

BigDecimal#_dump -> String (4.0)

BigDecimal._load で復元可能な文字列を返します。 Marshal.#dump から呼び出されます。

BigDecimal._load で復元可能な文字列を返します。
Marshal.#dump から呼び出されます。

//emlist[][ruby]{
require 'bigdecimal'
inf = BigDecimal('Infinity') # => Infinity
s = Marshal.dump(inf) # => "\x04\bu:\x0FBigDecimal\x0F9:Infinity"
Marshal.load(s) # => Infinity
//}

@see BigDecimal._load, Marshal.#dump,...

BigDecimal#abs -> BigDecimal (4.0)

self の絶対値を返します。

self の絶対値を返します。

//emlist[][ruby]{
require 'bigdecimal'
BigDecimal('5').abs.to_i # => 5
BigDecimal('-3').abs.to_i # => 3
//}

絞り込み条件を変える

BigDecimal#add(other, n) -> BigDecimal (4.0)

和を計算します。

和を計算します。

self + other を最大で n 桁まで計算します。計算結果の精度が n より大きい
ときは BigDecimal.mode で指定された方法で丸められます。

@param other self に足す数を指定します。

@param n 有効桁数を整数で指定します。0 を指定した場合は
BigDecimal#+ と同じ値を返します。

@raise ArgumentError n に負の数を指定した場合に発生します。

@see BigDecimal#+

BigDecimal#ceil -> Integer (4.0)

self 以上の整数のうち、最も小さい整数を計算し、その値を返します。

self 以上の整数のうち、最も小さい整数を計算し、その値を返します。

@param n 小数点以下の桁数を整数で指定します。

//emlist[][ruby]{
require "bigdecimal"
BigDecimal("1.23456").ceil # => 2
BigDecimal("-1.23456").ceil # => -1
//}

以下のように引数を与えて、小数点以下 n+1 位の数字を操作することもできます。
n >= 0 なら、小数点以下 n + 1 位の数字を操作します
(小数点以下を、最大 n 桁にします)。
n が負のときは小数点以上 n 桁目を操作...

BigDecimal#ceil(n) -> BigDecimal (4.0)

self 以上の整数のうち、最も小さい整数を計算し、その値を返します。

self 以上の整数のうち、最も小さい整数を計算し、その値を返します。

@param n 小数点以下の桁数を整数で指定します。

//emlist[][ruby]{
require "bigdecimal"
BigDecimal("1.23456").ceil # => 2
BigDecimal("-1.23456").ceil # => -1
//}

以下のように引数を与えて、小数点以下 n+1 位の数字を操作することもできます。
n >= 0 なら、小数点以下 n + 1 位の数字を操作します
(小数点以下を、最大 n 桁にします)。
n が負のときは小数点以上 n 桁目を操作...

BigDecimal#coerce(other) -> Array (4.0)

self と other が同じクラスになるよう、self か other を変換し [other, self] という配列にして返します。

self と other が同じクラスになるよう、self か other を変換し [other,
self] という配列にして返します。

@param other 比較または変換するオブジェクト

BigDecimal#coerce は Ruby における強制型変換のための機能です。
BigDecimal オブジェクトとその他のオブジェクト間の各種の計算は
BigDecimal#coerce の結果を元に行われます。

//emlist[][ruby]{
require "bigdecimal"
a = BigDecimal("1.0")
b = a / 2.0 # => 0.5e0
...

BigDecimal#div(other) -> BigDecimal (4.0)

商を計算します。

商を計算します。

@param other self を割る数を指定します。

詳細は Numeric#quo を参照して下さい。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

絞り込み条件を変える

BigDecimal#div(other, n) -> BigDecimal (4.0)

商を計算します。

商を計算します。

self / other を最大で n 桁まで計算します。計算結果の精度が n より大きい
ときは BigDecimal.mode で指定された方法で丸められます。

@param other self を割る数を指定します。

@param n 有効桁数を整数で指定します。省略するか 0 を指定した場合は
BigDecimal#/ と同じ値を返します。

@raise ArgumentError n に負の数を指定した場合に発生します。

@see BigDecimal#/

BigDecimal#divmod(n) -> [BigDecimal, BigDecimal] (4.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。

商は負の無限大負方向に丸められます。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

a.divmod(b) # => [0.4e1, 0.6e1]
//}

BigDecimal#eql?(other) -> bool (4.0)

self が other と等しい場合に true を、そうでない場合に false を返します。

self が other と等しい場合に true を、そうでない場合に false を返します。

それぞれの値は BigDecimal#coerce で変換して比較される場合があります。

//emlist[][ruby]{
require 'bigdecimal'
BigDecimal('1.0') == 1.0 # => true
//}

BigDecimal#exponent -> Integer (4.0)

self の指数部を整数値で返します。

self の指数部を整数値で返します。

BigDecimal#finite? -> bool (4.0)

self が ∞または NaN でないときに true を返します。それ以外のときに false を返します。

self が ∞または NaN でないときに true を返します。それ以外のときに
false を返します。

絞り込み条件を変える

BigDecimal#fix -> BigDecimal (4.0)

self の整数部分を新しい BigDecimal オブジェクトにして返します。

self の整数部分を新しい BigDecimal オブジェクトにして返します。

BigDecimal#floor -> Integer (4.0)

self 以下の最大整数を返します。

self 以下の最大整数を返します。

@param n 小数点以下の桁数を整数で指定します。

//emlist[][ruby]{
require "bigdecimal"
BigDecimal("1.23456").floor # => 1
BigDecimal("-1.23456").floor # => -2
//}

以下のように引数 n を与えることもできます。
n >= 0 なら、小数点以下 n + 1 位の数字を操作します
(小数点以下を、最大 n 桁にします)。
n が負のときは小数点以上 n 桁目を操作します
(小数点位置から左に少なくとも n 個の 0 が並びます...

BigDecimal#floor(n) -> BigDecimal (4.0)

self 以下の最大整数を返します。

self 以下の最大整数を返します。

@param n 小数点以下の桁数を整数で指定します。

//emlist[][ruby]{
require "bigdecimal"
BigDecimal("1.23456").floor # => 1
BigDecimal("-1.23456").floor # => -2
//}

以下のように引数 n を与えることもできます。
n >= 0 なら、小数点以下 n + 1 位の数字を操作します
(小数点以下を、最大 n 桁にします)。
n が負のときは小数点以上 n 桁目を操作します
(小数点位置から左に少なくとも n 個の 0 が並びます...

BigDecimal#frac -> BigDecimal (4.0)

self の小数部分を新しい BigDecimal オブジェクトにして返します。

self の小数部分を新しい BigDecimal オブジェクトにして返します。

BigDecimal#hash -> Integer (4.0)

self のハッシュ値を返します。

self のハッシュ値を返します。

符号、小数部、指数部が同じ場合に同じハッシュ値を返します。

絞り込み条件を変える

BigDecimal#infinite? -> 1 | -1 | nil (4.0)

self が +∞のときに 1 、-∞のときに-1、それ以外のときに nil を返します。

self が +∞のときに 1 、-∞のときに-1、それ以外のときに nil を返します。

BigDecimal#inspect -> String (4.0)

BigDecimal オブジェクトを表す文字列を返します。

BigDecimal オブジェクトを表す文字列を返します。

//emlist[][ruby]{
require "bigdecimal"
BigDecimal("1234.5678").inspect
# => "0.12345678e4"
//}

BigDecimal#modulo(n) -> BigDecimal (4.0)

self を n で割った余りを返します。

self を n で割った余りを返します。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
( x % 3).to_i # => 1
(-x % 3).to_i # => 2
( x % -3).to_i # => -2
(-x % -3).to_i # => -1
//}

戻り値は n と同じ符号になります。これは BigDecimal#remainder とは
異なる点に注意してください。詳細は Numeric#%、
Numeric#re...

BigDecimal#mult(other, n) -> BigDecimal (4.0)

積を計算します。

積を計算します。

self * other を最大で n 桁まで計算します。計算結果の精度が n より大きい
ときは BigDecimal.mode で指定された方法で丸められます。

@param other self に掛ける数を指定します。

@param n 有効桁数を整数で指定します。0 を指定した場合は
BigDecimal#* と同じ値を返します。

@raise ArgumentError n に負の数を指定した場合に発生します。

@see BigDecimal#*

BigDecimal#nan? -> bool (4.0)

self が NaN のときに true を返します。それ以外のときに false を返します。

self が NaN のときに true を返します。それ以外のときに false を返します。

絞り込み条件を変える

BigDecimal#nonzero? -> self | nil (4.0)

self が 0 以外のときに self を返します。0 のときに nil を返します。

self が 0 以外のときに self を返します。0 のときに nil を返します。

//emlist[][ruby]{
require "bigdecimal"
BigDecimal("0").nonzero? # => nil
BigDecimal("1").nonzero? # => 0.1e1
//}

BigDecimal#power(n) -> BigDecimal (4.0)

self の n 乗を計算します。

self の n 乗を計算します。

戻り値の有効桁数は self の有効桁数の n 倍以上になります。

@param n selfを other 乗する数を指定します。

@param prec 有効桁数を整数で指定します。

BigDecimal#power(n, prec) -> BigDecimal (4.0)

self の n 乗を計算します。

self の n 乗を計算します。

戻り値の有効桁数は self の有効桁数の n 倍以上になります。

@param n selfを other 乗する数を指定します。

@param prec 有効桁数を整数で指定します。

BigDecimal#precs -> [Integer, Integer] (4.0)

self の有効数字と最大有効数字の配列を返します。

self の有効数字と最大有効数字の配列を返します。

BigDecimal#quo(other) -> BigDecimal (4.0)

商を計算します。

商を計算します。

@param other self を割る数を指定します。

詳細は Numeric#quo を参照して下さい。

計算結果の精度についてはlib:bigdecimal#precisionを参照してください。

絞り込み条件を変える

BigDecimal#remainder(n) -> BigDecimal (4.0)

self を n で割った余りを返します。

self を n で割った余りを返します。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'
x = BigDecimal((2**100).to_s)
x.remainder(3).to_i # => 1
(-x).remainder(3).to_i # => -1
x.remainder(-3).to_i # => 1
(-x).remainder(-3).to_i # => -1
//}

戻り値は self と同じ符号になります。これは BigDecimal#% とは異な
る点に注意し...

BigDecimal#round -> Integer (4.0)

クラスメソッド BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で指定した BigDecimal::ROUND_MODE に従って丸め操作を実行します。

クラスメソッド BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で指定した
BigDecimal::ROUND_MODE に従って丸め操作を実行します。

@param n 小数点以下の桁数を整数で指定します。

@param b 丸め処理の方式として、BigDecimal.mode の第 1 引数と同じ
値を指定します。

BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で何も指定せず、
かつ、引数を指定しない場合は
「小数点以下第一位の数を四捨五入して整数(BigDecimal 値)」に...

BigDecimal#round(n) -> BigDecimal (4.0)

クラスメソッド BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で指定した BigDecimal::ROUND_MODE に従って丸め操作を実行します。

クラスメソッド BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で指定した
BigDecimal::ROUND_MODE に従って丸め操作を実行します。

@param n 小数点以下の桁数を整数で指定します。

@param b 丸め処理の方式として、BigDecimal.mode の第 1 引数と同じ
値を指定します。

BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で何も指定せず、
かつ、引数を指定しない場合は
「小数点以下第一位の数を四捨五入して整数(BigDecimal 値)」に...

BigDecimal#round(n, b) -> BigDecimal (4.0)

クラスメソッド BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で指定した BigDecimal::ROUND_MODE に従って丸め操作を実行します。

クラスメソッド BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で指定した
BigDecimal::ROUND_MODE に従って丸め操作を実行します。

@param n 小数点以下の桁数を整数で指定します。

@param b 丸め処理の方式として、BigDecimal.mode の第 1 引数と同じ
値を指定します。

BigDecimal.mode(BigDecimal::ROUND_MODE,flag) で何も指定せず、
かつ、引数を指定しない場合は
「小数点以下第一位の数を四捨五入して整数(BigDecimal 値)」に...

BigDecimal#save_exception_mode { ... } -> object (4.0)

例外処理に関する BigDecimal.mode の設定を保存してブロックを評価し ます。ブロック中で変更した設定はブロックの評価後に復元されます。

例外処理に関する BigDecimal.mode の設定を保存してブロックを評価し
ます。ブロック中で変更した設定はブロックの評価後に復元されます。

ブロックの評価結果を返します。

絞り込み条件を変える

BigDecimal#save_limit { ... } -> object (4.0)

現在の BigDecimal.limit の設定を保存してブロックを評価します。ブ ロック中で変更した設定はブロックの評価後に復元されます。

現在の BigDecimal.limit の設定を保存してブロックを評価します。ブ
ロック中で変更した設定はブロックの評価後に復元されます。

ブロックの評価結果を返します。

BigDecimal#save_rounding_mode { ... } -> object (4.0)

丸め処理に関する BigDecimal.mode の設定を保存してブロックを評価します。 ブロック中で変更した設定はブロックの評価後に復元されます。

丸め処理に関する BigDecimal.mode の設定を保存してブロックを評価します。
ブロック中で変更した設定はブロックの評価後に復元されます。

ブロックの評価結果を返します。

BigDecimal#sign -> -3 | -2 | -1 | 0 | 1 | 2 | 3 (4.0)

自身の符号等の性質に応じて、Integer を返します。

自身の符号等の性質に応じて、Integer を返します。

符号が正であれば正の整数を返し、負であれば負の整数を返し、NaN であれば 0 を返します。

NaN であれば、 0。 BigDecimal::SIGN_NaN と同じです。
+0 であれば、 1。 BigDecimal::SIGN_POSITIVE_ZERO と同じです。
-0 であれば、-1。 BigDecimal::SIGN_NEGATIVE_ZERO と同じです。
有限の正の値 であれば、 2。 BigDecimal::SIGN_POSITIVE_FINITE ...

BigDecimal#split -> [Integer, String, Integer, Integer] (4.0)

BigDecimal 値を 0.xxxxxxx*10**n と表現したときに、 符号 (NaNのときは 0、それ以外は+1か-1になります)、 仮数部分の文字列("xxxxxxx")と、基数(10)、更に指数 n を配列で返します。

BigDecimal 値を 0.xxxxxxx*10**n と表現したときに、
符号 (NaNのときは 0、それ以外は+1か-1になります)、
仮数部分の文字列("xxxxxxx")と、基数(10)、更に指数 n を配列で返します。

//emlist[][ruby]{
require "bigdecimal"
a = BigDecimal("3.14159265")
f, x, y, z = a.split
//}

とすると、f = 1、x = "314159265"、y = 10、z = 1 になります。
従って、以下のようにする事で Float に変換することができます。

//em...

BigDecimal#sqrt(n) -> BigDecimal (4.0)

self の有効桁 n 桁の平方根 (n の平方根ではありません) をニュートン法で 計算します。

self の有効桁 n 桁の平方根 (n の平方根ではありません) をニュートン法で
計算します。

@param n 有効桁数を整数で指定します。

@raise ArgumentError n に負の数を指定した場合に発生します。

絞り込み条件を変える

<< < ... 2 3 4 5 6 ... > >>