るりまサーチ (Ruby 2.3.0)

最速Rubyリファレンスマニュアル検索!
37件ヒット [1-37件を表示] (0.088秒)
トップページ > バージョン:2.3.0[x] > クエリ:l[x] > クエリ:times[x]

別のキーワード

  1. matrix l
  2. _builtin $-l
  3. kernel $-l
  4. lupdecomposition l
  5. l

検索結果

Integer#times {|n| ... } -> self (54661.0)

self 回だけ繰り返します。 self が正の整数でない場合は何もしません。

self 回だけ繰り返します。
self が正の整数でない場合は何もしません。

またブロックパラメータには 0 から self - 1 までの数値が渡されます。

//emlist[][ruby]{
3.times { puts "Hello, World!" } # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" } # 何も表示されない。
5.times {|n| print n } # 01234 と表示される。
//}

@see Integer#upto, Integer#downto,...

Float#next_float -> Float (27619.0)

浮動小数点数で表現可能な self の次の値を返します。

浮動小数点数で表現可能な self の次の値を返します。

Float::MAX.next_float、Float::INFINITY.next_float は
Float::INFINITY を返します。Float::NAN.next_float は
Float::NAN を返します。

//emlist[例][ruby]{
p 0.01.next_float # => 0.010000000000000002
p 1.0.next_float # => 1.0000000000000002
p 100.0.next_float # => 100.00000000000001

p ...

Float#prev_float -> Float (27619.0)

浮動小数点数で表現可能な self の前の値を返します。

浮動小数点数で表現可能な self の前の値を返します。

(-Float::MAX).prev_float と (-Float::INFINITY).prev_float
は -Float::INFINITY を返します。Float::NAN.prev_float は
Float::NAN を返します。

//emlist[例][ruby]{
p 0.01.prev_float # => 0.009999999999999998
p 1.0.prev_float # => 0.9999999999999999
p 100.0.prev_float # => 99.9999999999...

Etc::PC_TIMESTAMP_RESOLUTION -> Integer (27601.0)

IO#pathconf の引数に指定します。

IO#pathconf の引数に指定します。

詳細は fpathconf(3) を参照してください。

Rake::FileCreationTask#timestamp -> Rake::EarlyTime (27601.0)

どんなタイムスタンプよりも前の時刻をあらわすタイムスタンプを返します。

どんなタイムスタンプよりも前の時刻をあらわすタイムスタンプを返します。


@see [[FileTask#timestamp]]

絞り込み条件を変える

Rake::FileTask#timestamp -> Time | Rake::LateTime (27601.0)

ファイルタスクのタイムスタンプを返します。

ファイルタスクのタイムスタンプを返します。

//emlist[][ruby]{
# Rakefile での記載例とする

task default: "test.txt"
file "test.txt" do |task|
Rake.application.options.build_all = false
task.timestamp # => #<Rake::LateTime:0x2ba58f0>
end
//}

Socket::AncillaryData#timestamp -> Time (27301.0)

タイムスタンプ制御メッセージに含まれる時刻を Time オブジェクト で返します。

タイムスタンプ制御メッセージに含まれる時刻を Time オブジェクト
で返します。

"タイムスタンプ制御メッセージ" は以下のいずれかです。
* SOL_SOCKET/SCM_TIMESTAMP (micro second) GNU/Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MacOS X
* SOL_SOCKET/SCM_TIMESTAMPNS (nano second) GNU/Linux
* SOL_SOCKET/SCM_BINTIME (2**(-64) second) FreeBSD

require 'socket...

Process.#clock_gettime(clock_id, unit=:float_second) -> Float | Integer (19291.0)

POSIX の clock_gettime() 関数の時間を返します。

POSIX の clock_gettime() 関数の時間を返します。

例:
p Process.clock_gettime(Process::CLOCK_MONOTONIC) #=> 896053.968060096

@param clock_id クロックの種類を以下の定数のいずれかで指定します。
サポートされている定数は OS やバージョンに依存します。

: Process::CLOCK_REALTIME
SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS...

VALUE rb_time_timespec_new(const struct timespec *ts, int offset) (18901.0)

引数 ts、offset を元に Time オブジェクトを作成して返します。

引数 ts、offset を元に Time オブジェクトを作成して返します。

@param ts timespec 構造体のポインタ

@param offset 協定世界時との時差(秒)。
-86400 < offset < 86400 の場合は指定した時差に、INT_MAX
を指定した場合は地方時、INT_MAX-1 を指定した場合は UTC に
なります。

@raise ArgumentError offset に上述の範囲以外の値を指定した場合に発生し
ま...

Binding#local_variables -> [Symbol] (18319.0)

ローカル変数の一覧を Symbol の配列で返します。

ローカル変数の一覧を Symbol の配列で返します。

//emlist[例][ruby]{
def foo
a = 1
2.times do |n|
binding.local_variables #=> [:a, :n]
end
end
//}

このメソッドは以下のコードと同様の動作をします。

//emlist[][ruby]{
binding.eval("local_variables")
//}

絞り込み条件を変える

IO.select(reads, writes = [], excepts = [], timeout = nil) -> [[IO]] | nil (18319.0)

select(2) を実行します。

select(2) を実行します。

与えられた入力/出力/例外待ちの IO オブジェクトの中から準備ができたものを
それぞれ配列にして、配列の配列として返します。
タイムアウトした時には nil を返します。

@param reads 入力待ちする IO オブジェクトの配列を渡します。

@param writes 出力待ちする IO オブジェクトの配列を渡します。

@param excepts 例外待ちする IO オブジェクトの配列を渡します。

@param timeout タイムアウトまでの時間を表す数値または nil を指定します。数値で指定したときの単位は秒です。nil を...

Process.#waitall -> [[Integer, Process::Status]] (18319.0)

全ての子プロセスが終了するのを待ちます。 終了した子プロセスの pid と終了ステータス (Process::Status) の配列の配列を返します。 子プロセスがいない状態でこのメソッドを呼び出すと空の配列を返します。

全ての子プロセスが終了するのを待ちます。
終了した子プロセスの pid と終了ステータス
(Process::Status) の配列の配列を返します。
子プロセスがいない状態でこのメソッドを呼び出すと空の配列を返します。

$? には最後に終了した子プロセスの Process::Status オブジェクトが設定されます。

2.times {|n|
Process.fork() { exit n }
}
p Process.waitall
#=> :Status: pid=2766,exited(1)>], [2765, #<Process::St...

Thread::ConditionVariable#signal -> self (18319.0)

状態変数を待っているスレッドを1つ再開します。再開された スレッドは Thread::ConditionVariable#wait で指定した mutex のロックを試みます。

状態変数を待っているスレッドを1つ再開します。再開された
スレッドは Thread::ConditionVariable#wait
で指定した mutex のロックを試みます。

@return 常に self を返します。

//emlist[例][ruby]{
mutex = Mutex.new
cv = ConditionVariable.new
flg = true

3.times {
Thread.start {
mutex.synchronize {
puts "a1"
while (flg)
cv.wait(mutex)
...

ThreadsWait#all_waits -> () (18319.0)

指定されたスレッドすべてが終了するまで待ちます。 ブロックが与えられた場合、スレッド終了時にブロックを評価します。

指定されたスレッドすべてが終了するまで待ちます。
ブロックが与えられた場合、スレッド終了時にブロックを評価します。

使用例
require 'thwait'

threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}

thall = ThreadsWait.new(*threads)
thall.all_waits{|th|
printf("end %s\n", th.inspect)
}

# 出力例
#=> #<Thread...

ThreadsWait.all_waits(*threads) -> () (18319.0)

指定されたスレッドすべてが終了するまで待ちます。 ブロックが与えられた場合、スレッド終了時にブロックを評価します。

指定されたスレッドすべてが終了するまで待ちます。
ブロックが与えられた場合、スレッド終了時にブロックを評価します。

@param threads 終了するまでまつスレッドを一つもしくは複数指定します。

require 'thwait'

threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}
ThreadsWait.all_waits(*threads) {|th| printf("end %s\n", th.inspect) }

# 出力例
#=...

絞り込み条件を変える

ThreadsWait.all_waits(*threads) {|thread| ...} -> () (18319.0)

指定されたスレッドすべてが終了するまで待ちます。 ブロックが与えられた場合、スレッド終了時にブロックを評価します。

指定されたスレッドすべてが終了するまで待ちます。
ブロックが与えられた場合、スレッド終了時にブロックを評価します。

@param threads 終了するまでまつスレッドを一つもしくは複数指定します。

require 'thwait'

threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}
ThreadsWait.all_waits(*threads) {|th| printf("end %s\n", th.inspect) }

# 出力例
#=...

xmlrpc (18037.0)

XML-RPC を扱うためのライブラリです。

XML-RPC を扱うためのライブラリです。

このページは xmlrpc ライブラリのまとめのページであり、require 'xmlrpc' を実行しても
エラーになることに注意して下さい。

=== Author and Copyright

Copyright (C) 2001-2004 by Michael Neumann

Released under the same term of license as Ruby.

=== Overview

XMLRPC is a lightweight protocol that enables remote procedure calls...

bigdecimal (18019.0)

bigdecimal は浮動小数点数演算ライブラリです。 任意の精度で 10 進表現された浮動小数点数を扱えます。

bigdecimal は浮動小数点数演算ライブラリです。
任意の精度で 10 進表現された浮動小数点数を扱えます。

//emlist[][ruby]{
require 'bigdecimal'
a = BigDecimal("0.123456789123456789")
b = BigDecimal("123456.78912345678", 40)
print a + b # => 0.123456912580245903456789e6
//}

一般的な 10 進数の計算でも有用です。2 進数の浮動小数点演算には微小な誤
差があるのに対し、BigDecimal では正確な値を得る事がで...

Kernel#modified?(target, times) -> Time | nil (9670.0)

target が times の全ての要素よりも新しい場合は target の更新時刻を返します。 そうでない場合は nil を返します。target が存在しない場合も nil を返します。

target が times の全ての要素よりも新しい場合は target の更新時刻を返します。
そうでない場合は nil を返します。target が存在しない場合も nil を返します。

@param target 対象のファイル名を指定します。

@param times Time の配列か Time を一つ指定します。

ARGF.class#eof -> bool (9319.0)

現在開いているファイルがEOFに達したらtrueを返します。そうでない場合は falseを返します。

現在開いているファイルがEOFに達したらtrueを返します。そうでない場合は
falseを返します。

@raise IOError ファイルがopenされていない場合に発生します。

$ echo "eof" | ruby argf.rb

ARGF.eof? # => false
3.times { ARGF.readchar }
ARGF.eof? # => false
ARGF.readchar # => "\n"
ARGF.eof? # =...

絞り込み条件を変える

ARGF.class#eof? -> bool (9319.0)

現在開いているファイルがEOFに達したらtrueを返します。そうでない場合は falseを返します。

現在開いているファイルがEOFに達したらtrueを返します。そうでない場合は
falseを返します。

@raise IOError ファイルがopenされていない場合に発生します。

$ echo "eof" | ruby argf.rb

ARGF.eof? # => false
3.times { ARGF.readchar }
ARGF.eof? # => false
ARGF.readchar # => "\n"
ARGF.eof? # =...

Enumerator::Lazy#enum_for(method = :each, *args) -> Enumerator::Lazy (9319.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Enumerator::Lazy#enum_for(method = :each, *args) {|*args| block} -> Enumerator::Lazy (9319.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Enumerator::Lazy#to_enum(method = :each, *args) -> Enumerator::Lazy (9319.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Enumerator::Lazy#to_enum(method = :each, *args) {|*args| block} -> Enumerator::Lazy (9319.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

絞り込み条件を変える

Thread::ConditionVariable#broadcast -> self (9319.0)

状態変数を待っているスレッドをすべて再開します。再開された スレッドは Thread::ConditionVariable#wait で指定した mutex のロックを試みます。

状態変数を待っているスレッドをすべて再開します。再開された
スレッドは Thread::ConditionVariable#wait
で指定した mutex のロックを試みます。

@return 常に self を返します。

//emlist[例][ruby]{
mutex = Mutex.new
cv = ConditionVariable.new
flg = true

3.times {
Thread.start {
mutex.synchronize {
puts "a1"
while (flg)
cv.wait(mutex)
...

Kernel.#at_exit { ... } -> Proc (9019.0)

与えられたブロックをインタプリタ終了時に実行します。

与えられたブロックをインタプリタ終了時に実行します。

at_exitがメソッドである点を除けば、END ブロックによる終了
処理の登録と同等です。登録した処理を取り消すことはできません。
spec/terminateも参照してください。

@return 登録した処理を Proc オブジェクトで返します。

//emlist[例][ruby]{
3.times do |i|
at_exit{puts "at_exit#{i}"}
end
END{puts "END"}
at_exit{puts "at_exit"}
puts "main_end"

#=> main_end
# a...

制御構造 (9019.0)

制御構造 条件分岐: * if * unless * case 繰り返し: * while * until * for * break * next * redo * retry 例外処理: * raise * begin その他: * return * BEGIN * END

制御構造
条件分岐:
* if
* unless
* case
繰り返し:
* while
* until
* for
* break
* next
* redo
* retry
例外処理:
* raise
* begin
その他:
* return
* BEGIN
* END

Rubyでは(Cなどとは異なり)制御構造は式であって、何らかの値を返すものが
あります(返さないものもあります。値を返さない式を代入式の右辺に置くと
syntax error になります)。

R...

変数と定数 (9019.0)

変数と定数 * local * instance * class * class_var_scope * global * pseudo * const * prio

変数と定数
* local
* instance
* class
* class_var_scope
* global
* pseudo
* const
* prio

Ruby の変数と定数の種別は変数名の最初の一文字によって、
ローカル変数、
インスタンス変数、
クラス変数、
グローバル変数、
定数
のいずれかに区別されます。
通常の変数の二文字目以降は英数字または
_ですが、組み込み変数の一部には
「`$'+1文字の記号」という変数があります(builtinを参照)。変数名
の長さにはメモリのサイズ以外の制限はありません。

===[a:local] ロ...

Benchmark.#bm(label_width = 0, *labels) {|rep| ... } -> [Benchmark::Tms] (727.0)

Benchmark.#benchmark メソッドの引数を簡略化したものです。

Benchmark.#benchmark メソッドの引数を簡略化したものです。

Benchmark.#benchmark メソッドと同様に働きます。

@param label_width ラベルの幅を指定します。
@param labels ブロックが Benchmark::Tms オブジェクトの配列を返す場合に指定します。

//emlist[][ruby]{
require 'benchmark'

n = 50000
Benchmark.bm do |x|
x.report { for i in 1..n; a = "1"; end }
x.report { n.t...

絞り込み条件を変える

Benchmark.#benchmark(caption = "", label_width = nil, fmtstr = nil, *labels) {|rep| ...} -> [Benchmark::Tms] (655.0)

Benchmark::Report オブジェクトを生成し、それを引数として与えられたブロックを実行します。

Benchmark::Report オブジェクトを生成し、それを引数として与えられたブロックを実行します。

基本的には以下のように使います。
ブロックが Benchmark::Tms オブジェクトの配列を返した場合は、
それらの数値も追加の行に表示されます。

@param caption レポートの一行目に表示する文字列を指定します。
@param label_width ラベルの幅を指定します。
@param fmtstr フォーマット文字列を指定します。
この引数を省略すると Benchmark::FORMAT が使用されます。...

Benchmark.#measure(label = "") { ... } -> Benchmark::Tms (349.0)

与えられたブロックを実行して、経過した時間を Process.#times で計り、 Benchmark::Tms オブジェクトを生成して返します。

与えられたブロックを実行して、経過した時間を Process.#times で計り、
Benchmark::Tms オブジェクトを生成して返します。

Benchmark::Tms オブジェクトには to_s が定義されているので、
基本的には以下のように使います。

//emlist[][ruby]{
require 'benchmark'

puts Benchmark::CAPTION
puts Benchmark.measure { "a"*1_000_000 }

#=>
#
# user system total real
# 1.1666...

Integer#downto(min) {|n| ... } -> self (319.0)

self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。

self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。

@param min 数値
@return self を返します。

//emlist[][ruby]{
5.downto(1) {|i| print i, " " } # => 5 4 3 2 1
//}

@see Integer#upto, Numeric#step, Integer#times

ThreadsWait#empty? -> bool (319.0)

同期されるスレッドが存在するならば true をかえします。

同期されるスレッドが存在するならば true をかえします。

使用例
require 'thwait'

threads = []
3.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}

thall = ThreadsWait.new
p thall.threads.empty? #=> true
thall.join(*threads)
p thall.threads.empty? #=> false

ThreadsWait#finished? -> bool (319.0)

すでに終了したスレッドが存在すれば true を返します。

すでに終了したスレッドが存在すれば true を返します。

使用例
require 'thwait'

threads = []
3.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}

thall = ThreadsWait.new(*threads)
p thall.finished? #=> false
sleep 3
p thall.finished? #=> true

絞り込み条件を変える

ThreadsWait#next_wait(nonblock = nil) -> Thread (319.0)

指定したスレッドのどれかが終了するまで待ちます。

指定したスレッドのどれかが終了するまで待ちます。

@param nonblock true を与えると、キューが空の時、例外 ThreadsWait::ErrNoFinishedThread が発生します。

@raise ErrNoWaitingThread 終了をまつスレッドが存在しない時、発生します。

@raise ErrNoFinishedThread nonblock がtrue でかつ、キューが空の時、発生します。

#使用例
require 'thwait'

threads = []
2.times {|i|
threads << Thread.n...

Rubyの起動 (73.0)

Rubyの起動 * cmd_option * shebang

Rubyの起動
* cmd_option
* shebang

Rubyインタプリタの起動は以下の書式のコマンドラインにより行います。

ruby [ option ...] [ -- ] [ programfile ] [ argument ...]

ここで、option は後述のcmd_option
のいずれかを指定します。-- は、オプション列の終りを明示するため
に使用できます。programfile は、Ruby スクリプトを記述したファイ
ルです。これを省略したり`-' を指定した場合には標準入力を Ruby ス
クリプトとみなします。

programfile が...