別のキーワード
ライブラリ
- ビルトイン (1161)
- bigdecimal (24)
- open-uri (4)
- pp (4)
キーワード
- Array (12)
- BigDecimal (24)
- Complex (24)
- Float (12)
- Hash (12)
- Integer (12)
- Rational (12)
- String (12)
-
_ _ callee _ _ (12) -
_ _ method _ _ (12) - ` (12)
- abort (24)
-
at
_ exit (12) - autoload (12)
- autoload? (12)
- binding (12)
-
block
_ given? (12) - caller (36)
-
caller
_ locations (24) - catch (24)
- chomp (12)
- chop (12)
- eval (24)
- exec (48)
- exit (12)
- exit! (12)
- fail (36)
- fork (24)
- format (12)
- gets (12)
-
global
_ variables (12) - gsub (36)
- iterator? (12)
- lambda (18)
- load (12)
-
local
_ variables (12) - loop (24)
- open (28)
- p (12)
- pp (12)
- print (12)
- printf (24)
- proc (19)
- putc (12)
- puts (12)
- raise (36)
- rand (24)
- readline (12)
- readlines (12)
- require (12)
-
require
_ relative (12) -
set
_ trace _ func (12) - sleep (24)
- spawn (48)
- sprintf (12)
- srand (24)
- sub (24)
- syscall (12)
- system (48)
- test (24)
- throw (12)
-
trace
_ var (36) -
untrace
_ var (12) - warn (12)
検索結果
先頭5件
-
Kernel
. # format(format , *arg) -> String (200.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
...@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、......, %B)が存在すること、sprintf のすべての方言をサ
ポートしていないこと(%': 3桁区切り)などの違いがあります。
Ruby には整数の大きさに上限がないので、%b, %B, %o, %x, %X
に負の数を与えると (左側に無限に1が続くとみなせるの......B", "0", "0x", "0X" を付加します。
C 言語と同様引数が 0 の場合にはプレフィックスが付加されません。
//emlist[][ruby]{
p sprintf("%#b", 10) #=> "0b1010"
p sprintf("%#B", 10) #=> "0B1010"
p sprintf("%#b", 0) #=> "0"
p sprintf("%#o", 10) #=> "012"
p sprintf("%#x",... -
Kernel
. # sprintf(format , *arg) -> String (200.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
...@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、......, %B)が存在すること、sprintf のすべての方言をサ
ポートしていないこと(%': 3桁区切り)などの違いがあります。
Ruby には整数の大きさに上限がないので、%b, %B, %o, %x, %X
に負の数を与えると (左側に無限に1が続くとみなせるの......B", "0", "0x", "0X" を付加します。
C 言語と同様引数が 0 の場合にはプレフィックスが付加されません。
//emlist[][ruby]{
p sprintf("%#b", 10) #=> "0b1010"
p sprintf("%#B", 10) #=> "0B1010"
p sprintf("%#b", 0) #=> "0"
p sprintf("%#o", 10) #=> "012"
p sprintf("%#x",... -
Kernel
. # spawn(env , program , *args , options={}) -> Integer (105.0) -
引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
...名文字列、Hash の値に設定する値とします。
nil とすることで環境変数が削除(unsetenv(3))されます。
//emlist[例][ruby]{
# FOO を BAR にして BAZ を削除する
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
//}
親プロセスは Process.#waitpid で子プロ......します。
//emlist[][ruby]{
# すべての環境変数をクリア
pid = spawn(command, :unsetenv_others=>true)
# FOO だけ
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true)
//}
「:pgroup」でプロセスグループを指定できます。
//emlist[][ruby]{
# true, 0 で新しい......2つの配列、を渡すことができます。
それぞれ Process.#setrlimit の引数が2個、3個の場合に対応します。
//emlist[][ruby]{
# 現プロセスの core の resource limit を取得
cur, max = Process.getrlimit(:CORE)
# 一時的に子プロセスの core dump を止める......din), 1(stdout), 2(stderr) 以外の
ファイルデスクリプタをすべて閉じます。
false がデフォルトです。
: :exception
Kernel.#system のみで指定できます。
これを true に設定すると、nil や false を返す代わりに例外が発生します。
fa... -
Kernel
. # spawn(program , *args) -> Integer (105.0) -
引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
...名文字列、Hash の値に設定する値とします。
nil とすることで環境変数が削除(unsetenv(3))されます。
//emlist[例][ruby]{
# FOO を BAR にして BAZ を削除する
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
//}
親プロセスは Process.#waitpid で子プロ......します。
//emlist[][ruby]{
# すべての環境変数をクリア
pid = spawn(command, :unsetenv_others=>true)
# FOO だけ
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true)
//}
「:pgroup」でプロセスグループを指定できます。
//emlist[][ruby]{
# true, 0 で新しい......2つの配列、を渡すことができます。
それぞれ Process.#setrlimit の引数が2個、3個の場合に対応します。
//emlist[][ruby]{
# 現プロセスの core の resource limit を取得
cur, max = Process.getrlimit(:CORE)
# 一時的に子プロセスの core dump を止める......din), 1(stdout), 2(stderr) 以外の
ファイルデスクリプタをすべて閉じます。
false がデフォルトです。
: :exception
Kernel.#system のみで指定できます。
これを true に設定すると、nil や false を返す代わりに例外が発生します。
fa... -
Kernel
. # lambda -> Proc (74.0) -
与えられたブロックから手続きオブジェクト (Proc のインスタンス) を生成して返します。Proc.new に近い働きをします。
...ない lambda は Ruby 2.6 までは警告メッセージ
「warning: tried to create Proc object without a block」
が出力され、Ruby 2.7 では
ArgumentError (tried to create Proc object without a block)
が発生します。
ブロックを指定しない proc は、Ruby 2.7 では
$VERBOSE......が出力され、Ruby 3.0 では
ArgumentError (tried to create Proc object without a block)
が発生します。
@raise ArgumentError スタック上にブロックがないのにブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block......それ以外では Proc#call)
へジャンプし値を返すには next を使います。break や return ではありません。
//emlist[例][ruby]{
def foo
f = Proc.new{
next 1
2 # この行に到達することはない
}
end
p foo().call #=> 1
//}
===[a:bloc... -
Kernel
. # lambda { . . . } -> Proc (74.0) -
与えられたブロックから手続きオブジェクト (Proc のインスタンス) を生成して返します。Proc.new に近い働きをします。
...ない lambda は Ruby 2.6 までは警告メッセージ
「warning: tried to create Proc object without a block」
が出力され、Ruby 2.7 では
ArgumentError (tried to create Proc object without a block)
が発生します。
ブロックを指定しない proc は、Ruby 2.7 では
$VERBOSE......が出力され、Ruby 3.0 では
ArgumentError (tried to create Proc object without a block)
が発生します。
@raise ArgumentError スタック上にブロックがないのにブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block......それ以外では Proc#call)
へジャンプし値を返すには next を使います。break や return ではありません。
//emlist[例][ruby]{
def foo
f = Proc.new{
next 1
2 # この行に到達することはない
}
end
p foo().call #=> 1
//}
===[a:bloc... -
Kernel
. # proc -> Proc (74.0) -
与えられたブロックから手続きオブジェクト (Proc のインスタンス) を生成して返します。Proc.new に近い働きをします。
...ない lambda は Ruby 2.6 までは警告メッセージ
「warning: tried to create Proc object without a block」
が出力され、Ruby 2.7 では
ArgumentError (tried to create Proc object without a block)
が発生します。
ブロックを指定しない proc は、Ruby 2.7 では
$VERBOSE......が出力され、Ruby 3.0 では
ArgumentError (tried to create Proc object without a block)
が発生します。
@raise ArgumentError スタック上にブロックがないのにブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block......それ以外では Proc#call)
へジャンプし値を返すには next を使います。break や return ではありません。
//emlist[例][ruby]{
def foo
f = Proc.new{
next 1
2 # この行に到達することはない
}
end
p foo().call #=> 1
//}
===[a:bloc... -
Kernel
. # proc { . . . } -> Proc (74.0) -
与えられたブロックから手続きオブジェクト (Proc のインスタンス) を生成して返します。Proc.new に近い働きをします。
...ない lambda は Ruby 2.6 までは警告メッセージ
「warning: tried to create Proc object without a block」
が出力され、Ruby 2.7 では
ArgumentError (tried to create Proc object without a block)
が発生します。
ブロックを指定しない proc は、Ruby 2.7 では
$VERBOSE......が出力され、Ruby 3.0 では
ArgumentError (tried to create Proc object without a block)
が発生します。
@raise ArgumentError スタック上にブロックがないのにブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block......それ以外では Proc#call)
へジャンプし値を返すには next を使います。break や return ではありません。
//emlist[例][ruby]{
def foo
f = Proc.new{
next 1
2 # この行に到達することはない
}
end
p foo().call #=> 1
//}
===[a:bloc... -
Kernel
. # lambda { . . . } -> Proc (50.0) -
与えられたブロックから手続きオブジェクト (Proc のインスタンス) を生成して返します。Proc.new に近い働きをします。
...nstead」
を出力します。
@raise ArgumentError ブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block
lambda(&block)
end
it = foo{p 12}
it.call #=> 12
//}
@see Proc,Proc.new
===[a:should_use_next] 手続きを中断して値を......それ以外では Proc#call)
へジャンプし値を返すには next を使います。break や return ではありません。
//emlist[例][ruby]{
def foo
f = Proc.new{
next 1
2 # この行に到達することはない
}
end
p foo().call #=> 1
//}
===[a:bloc......制限です。
//emlist[問題なし][ruby]{
(1..5).each { break }
//}
//emlist[LocalJumpError が発生します。][ruby]{
pr = Proc.new { break }
(1..5).each(&pr)
//}
===[a:lambda_proc] lambda と proc と Proc.new とイテレータの違い
Kernel.#lambda と Proc.new はどちらも Proc......nstead」
を出力します。
@raise ArgumentError ブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block
proc(&block)
end
it = foo{p 12}
it.call #=> 12
//}
@see Proc,Proc.new
===[a:should_use_next] 手続きを中断して値を... -
Kernel
. # proc { . . . } -> Proc (50.0) -
与えられたブロックから手続きオブジェクト (Proc のインスタンス) を生成して返します。Proc.new に近い働きをします。
...nstead」
を出力します。
@raise ArgumentError ブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block
lambda(&block)
end
it = foo{p 12}
it.call #=> 12
//}
@see Proc,Proc.new
===[a:should_use_next] 手続きを中断して値を......それ以外では Proc#call)
へジャンプし値を返すには next を使います。break や return ではありません。
//emlist[例][ruby]{
def foo
f = Proc.new{
next 1
2 # この行に到達することはない
}
end
p foo().call #=> 1
//}
===[a:bloc......制限です。
//emlist[問題なし][ruby]{
(1..5).each { break }
//}
//emlist[LocalJumpError が発生します。][ruby]{
pr = Proc.new { break }
(1..5).each(&pr)
//}
===[a:lambda_proc] lambda と proc と Proc.new とイテレータの違い
Kernel.#lambda と Proc.new はどちらも Proc......nstead」
を出力します。
@raise ArgumentError ブロックを省略した呼び出しを行ったときに発生します。
//emlist[例][ruby]{
def foo &block
proc(&block)
end
it = foo{p 12}
it.call #=> 12
//}
@see Proc,Proc.new
===[a:should_use_next] 手続きを中断して値を... -
Kernel
. # exit!(status = false) -> () (40.0) -
Rubyプログラムの実行を即座に終了します。 status として整数が与えられた場合、その値を Ruby コマンドの終了ステータスとします。 デフォルトの終了ステータスは 1 です。
...
Rubyプログラムの実行を即座に終了します。
status として整数が与えられた場合、その値を Ruby コマンドの終了ステータスとします。
デフォルトの終了ステータスは 1 です。
status が true の場合 0、 false の場合 1 を引数に指......例外処理などは一切行ないませ
ん。 Kernel.#fork の後、子プロセスを終了させる時などに用
いられます。
@param status 終了ステータスを整数か true または false で与えます。
//emlist[例][ruby]{
STDOUT.sync = true #表示前に終了しない......ようにする
puts 'start'
begin
puts 'start1...'
exit!
ensure
puts 'end1...' #実行されない
end
puts 'end' #実行されない
#=> start
# start1...
#終了ステータス:1
//}
@see Kernel.#exit,Kernel.#abort,Kernel.#at_exit,Kernel.#fork... -
Kernel
. # exit(status = true) -> () (40.0) -
Rubyプログラムの実行を終了します。status として整 数が与えられた場合、その値を Ruby コマンドの終了ステータスとします。 デフォルトの終了ステータスは 0(正常終了)です。
...
Rubyプログラムの実行を終了します。status として整
数が与えられた場合、その値を Ruby コマンドの終了ステータスとします。
デフォルトの終了ステータスは 0(正常終了)です。
status が true の場合 0、 false の場合 1 を引数に......節で捕捉することができます。
@param status 終了ステータスを整数か true または false で与えます。
//emlist[例][ruby]{
puts 'start'
begin
puts 'start1...'
exit
rescue SystemExit => err
puts "end1 with #{err.inspect}"
end
begin
puts 'start2...'
exit
ensu......re
puts 'end2...'
end
puts 'end' #実行されない
#=> start
# start1...
# end1 with #<SystemExit: exit>
# start2...
# end2...
#終了ステータス:0
//}
@see Kernel.#exit!,Kernel.#abort, d:spec/control#begin...