クラス
-
ARGF
. class (6) - Array (2)
- Binding (3)
-
Encoding
:: Converter (3) - Enumerator (2)
-
Enumerator
:: Lazy (2) - Exception (2)
-
File
:: Stat (2) - IO (11)
- MatchData (4)
- Module (2)
- Object (3)
- Set (49)
- String (3)
- Thread (6)
- Time (5)
- TracePoint (1)
モジュール
- Enumerable (14)
キーワード
- & (1)
- + (1)
- - (1)
- << (1)
- == (1)
- === (1)
- [] (1)
- ^ (1)
- add (1)
- add? (1)
-
add
_ trace _ func (1) - advise (1)
- all? (3)
- any? (3)
-
backtrace
_ locations (1) - byteindex (1)
- byteoffset (2)
- byterindex (1)
-
class
_ variable _ set (1) - classify (1)
- clear (1)
- clone (1)
- collect! (1)
-
const
_ set (1) -
defined
_ class (1) - delete (1)
- delete? (1)
-
delete
_ if (1) - difference (2)
- disjoint? (1)
- divide (2)
- dup (1)
- each (1)
- empty? (1)
-
external
_ encoding (1) - filter! (1)
- flatten (1)
- flatten! (1)
- getlocal (1)
-
gmt
_ offset (1) - gmtoff (1)
- include? (1)
- inspect (1)
-
instance
_ variable _ defined? (1) -
instance
_ variable _ get (1) -
instance
_ variable _ set (1) -
internal
_ encoding (2) - intersect? (1)
- intersection (2)
-
keep
_ if (1) - length (1)
-
local
_ variable _ defined? (1) -
local
_ variable _ get (1) -
local
_ variable _ set (1) - localtime (1)
- map! (1)
- member? (1)
- merge (1)
- none? (3)
- offset (2)
- one? (3)
- pos= (1)
- pread (1)
-
primitive
_ convert (3) -
proper
_ subset? (1) -
proper
_ superset? (1) - pwrite (1)
- reject! (1)
- replace (1)
- reset (1)
- seek (2)
- select! (1)
-
set
_ backtrace (1) -
set
_ encoding (6) -
set
_ encoding _ by _ bom (1) -
set
_ trace _ func (1) - setbyte (1)
- setgid? (1)
- setuid? (1)
- size (1)
- subset? (1)
- subtract (1)
- superset? (1)
- sysseek (1)
-
thread
_ variable? (1) -
thread
_ variable _ get (1) -
thread
_ variable _ set (1) -
to
_ a (1) -
to
_ s (1) -
to
_ set (2) - union (1)
-
utc
_ offset (1) -
with
_ index (4) - | (1)
検索結果
先頭5件
-
Set
# proper _ subset?(set) -> bool (45862.0) -
self が集合 set の部分集合である場合に true を返します。
self が集合 set の部分集合である場合に true を返します。
subset? は、2 つの集合が等しい場合にも true となります。
proper_subset? は、2 つの集合が等しい場合には false を返します。
@param set 比較対象の Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトでない場合に発生します。
//emlist[][ruby]{
s = Set[1, 2]
p s.subset?(Set[1, 2, 3]) # => true
p s.subset?(Set[1... -
Set
# proper _ superset?(set) -> bool (45862.0) -
self が集合 set の上位集合 (スーパーセット) である場合に true を 返します。
self が集合 set の上位集合 (スーパーセット) である場合に true を
返します。
superset? は、2 つの集合が等しい場合にも true となります。
proper_superset? は、2 つの集合が等しい場合には false を返します。
@param set 比較対象の Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトでない場合に発生します。
//emlist[][ruby]{
s = Set[1, 2, 3]
p s.superset?(Set[1, 2]) # => t... -
Set
# subset?(set) -> bool (45862.0) -
self が集合 set の部分集合である場合に true を返します。
self が集合 set の部分集合である場合に true を返します。
subset? は、2 つの集合が等しい場合にも true となります。
proper_subset? は、2 つの集合が等しい場合には false を返します。
@param set 比較対象の Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトでない場合に発生します。
//emlist[][ruby]{
s = Set[1, 2]
p s.subset?(Set[1, 2, 3]) # => true
p s.subset?(Set[1... -
Set
# superset?(set) -> bool (45862.0) -
self が集合 set の上位集合 (スーパーセット) である場合に true を 返します。
self が集合 set の上位集合 (スーパーセット) である場合に true を
返します。
superset? は、2 つの集合が等しい場合にも true となります。
proper_superset? は、2 つの集合が等しい場合には false を返します。
@param set 比較対象の Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトでない場合に発生します。
//emlist[][ruby]{
s = Set[1, 2, 3]
p s.superset?(Set[1, 2]) # => t... -
Set
# reset -> self (45310.0) -
キーのハッシュ値を再計算します。
キーのハッシュ値を再計算します。
既存の要素の変更後、内部状態をリセットして self を返します。
要素はインデックスし直され、重複削除されます。
@see Hash#rehash -
Set
# divide {|o1 , o2| . . . } -> Set (27730.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
ブロックパラメータが 1 個の場合、block.call(o1) == block.call(o2) が真
ならば、o1 と o2 は同じ分割に属します。
ブロックパラメータが 2 個の場合、block.call(o1, o2) が真ならば、
o1 と o2 は同じ分割に属します。
この場合、block.call(o1, o2) == block.call(o2, o1)
が成立しないブロックを与えると期待通りの結果が得られません。
//emlist[例1][ruby]{
numbers = Set.new(1... -
Set
# divide {|o| . . . } -> Set (27730.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
ブロックパラメータが 1 個の場合、block.call(o1) == block.call(o2) が真
ならば、o1 と o2 は同じ分割に属します。
ブロックパラメータが 2 個の場合、block.call(o1, o2) が真ならば、
o1 と o2 は同じ分割に属します。
この場合、block.call(o1, o2) == block.call(o2, o1)
が成立しないブロックを与えると期待通りの結果が得られません。
//emlist[例1][ruby]{
numbers = Set.new(1... -
Set
# disjoint?(set) -> bool (27523.0) -
self と set が互いに素な集合である場合に true を返します。
self と set が互いに素な集合である場合に true を返します。
逆に self と set の共通集合かを確認する場合には Set#intersect? を
使用します。
@param self Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトでない場合に発生します。
//emlist[][ruby]{
p Set[1, 2, 3].disjoint? Set[3, 4] # => false
p Set[1, 2, 3].disjoint? Set[4, 5] # => true
//}
@see Set#int... -
Set
# intersect?(set) -> bool (27505.0) -
self と set の共通要素がある場合に true を返します。
self と set の共通要素がある場合に true を返します。
@param self Set オブジェクトを指定します。
@raise ArgumentError 引数が Set オブジェクトでない場合に発生します。
p Set[1, 2, 3].intersect?(Set[3, 4]) # => true
p Set[1, 2, 3].intersect?(Set[4, 5]) # => false
@see Set#intersection, Set#disjoint? -
Set
# ==(set) -> bool (27439.0) -
2 つの集合が等しいときに true を返します。
2 つの集合が等しいときに true を返します。
より厳密には、引数 set が Set オブジェクトであり、self と set が同数の
要素を持ち、かつそれらの要素がすべて等しい場合に true となります。
それ以外の場合には、false を返します。
要素の等しさは Object#eql? により判定されます。
@param set 比較対象のオブジェクトを指定します。
//emlist[][ruby]{
s1 = Set[10, 20, 30]
s2 = Set[10, 30, 40]
s3 = Set[30, 10, 30, 20]
p s1 == s2 # => fa... -
Set
# flatten -> Set (27421.0) -
集合を再帰的に平坦化します。
集合を再帰的に平坦化します。
flatten は、平坦化した集合を新しく作成し、それを返します。
flatten! は、元の集合を破壊的に平坦化します。集合の要素に変更が
発生した場合には self を、そうでない場合には nil を返します。
@raise ArgumentError 集合の要素として self が再帰的に現れた場合に発生
します。
//emlist[][ruby]{
s = Set[Set[1,2], 3]
p s.flatten # => #<Set: {1, 2, 3}>
p s # => #<Set:... -
Set
# clone -> Set (27388.0) -
集合を複製して返します。
集合を複製して返します。
dup は、集合の内容と taint 情報のみコピーします。
clone は、それに加えて、freeze 情報と特異メソッドをコピーします。
いずれも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。
Set クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
ただし、clone では内部記憶の freeze 情報はコピーされません。
このため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してくだ... -
Set
# dup -> Set (27388.0) -
集合を複製して返します。
集合を複製して返します。
dup は、集合の内容と taint 情報のみコピーします。
clone は、それに加えて、freeze 情報と特異メソッドをコピーします。
いずれも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。
Set クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
ただし、clone では内部記憶の freeze 情報はコピーされません。
このため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してくだ... -
Set
# +(enum) -> Set (27373.0) -
和集合、すなわち、2 つの集合の少なくともどちらか一方に属するすべての 要素からなる新しい集合を作ります。
和集合、すなわち、2 つの集合の少なくともどちらか一方に属するすべての
要素からなる新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
p Set[10, 20, 30] + Set[10, 20, 40]
# => #<Set: {10, 20, 30, 40}>
//} -
Set
# union(enum) -> Set (27373.0) -
和集合、すなわち、2 つの集合の少なくともどちらか一方に属するすべての 要素からなる新しい集合を作ります。
和集合、すなわち、2 つの集合の少なくともどちらか一方に属するすべての
要素からなる新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
p Set[10, 20, 30] + Set[10, 20, 40]
# => #<Set: {10, 20, 30, 40}>
//} -
Set
# |(enum) -> Set (27373.0) -
和集合、すなわち、2 つの集合の少なくともどちらか一方に属するすべての 要素からなる新しい集合を作ります。
和集合、すなわち、2 つの集合の少なくともどちらか一方に属するすべての
要素からなる新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
p Set[10, 20, 30] + Set[10, 20, 40]
# => #<Set: {10, 20, 30, 40}>
//} -
Set
# &(enum) -> Set (27370.0) -
共通部分、すなわち、2つの集合のいずれにも属するすべての要素からなる 新しい集合を作ります。
共通部分、すなわち、2つの集合のいずれにも属するすべての要素からなる
新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
s1 = Set[10, 20, 30]
s2 = Set[10, 30, 50]
p s1 & s2 #=> #<Set: {10, 30}>
//}
@see Array#&, Array#intersection -
Set
# -(enum) -> Set (27370.0) -
差集合、すなわち、元の集合の要素のうち引数 enum に含まれる要素を取り除いた 新しい集合を作ります。
差集合、すなわち、元の集合の要素のうち引数 enum に含まれる要素を取り除いた
新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
p Set[10, 20, 30] - Set[10, 20, 40]
# => #<Set: {30}>
//} -
Set
# difference(enum) -> Set (27370.0) -
差集合、すなわち、元の集合の要素のうち引数 enum に含まれる要素を取り除いた 新しい集合を作ります。
差集合、すなわち、元の集合の要素のうち引数 enum に含まれる要素を取り除いた
新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
p Set[10, 20, 30] - Set[10, 20, 40]
# => #<Set: {30}>
//} -
Set
# intersection(enum) -> Set (27370.0) -
共通部分、すなわち、2つの集合のいずれにも属するすべての要素からなる 新しい集合を作ります。
共通部分、すなわち、2つの集合のいずれにも属するすべての要素からなる
新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
s1 = Set[10, 20, 30]
s2 = Set[10, 30, 50]
p s1 & s2 #=> #<Set: {10, 30}>
//}
@see Array#&, Array#intersection -
Set
# ^(enum) -> Set (27367.0) -
対称差、すなわち、2 つの集合のいずれか一方にだけ属するすべての要素からなる 新しい集合を作ります。
対称差、すなわち、2 つの集合のいずれか一方にだけ属するすべての要素からなる
新しい集合を作ります。
@param enum each メソッドが定義されたオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
s1 = Set[10, 20, 30]
s2 = Set[10, 30, 50]
p s1 ^ s2 # => #<Set: {50, 20}>
//} -
Set
# flatten! -> self | nil (27121.0) -
集合を再帰的に平坦化します。
集合を再帰的に平坦化します。
flatten は、平坦化した集合を新しく作成し、それを返します。
flatten! は、元の集合を破壊的に平坦化します。集合の要素に変更が
発生した場合には self を、そうでない場合には nil を返します。
@raise ArgumentError 集合の要素として self が再帰的に現れた場合に発生
します。
//emlist[][ruby]{
s = Set[Set[1,2], 3]
p s.flatten # => #<Set: {1, 2, 3}>
p s # => #<Set:... -
Set
# collect! {|o| . . . } -> self (27100.0) -
集合の各要素についてブロックを評価し、その結果で元の集合を置き換えます。
集合の各要素についてブロックを評価し、その結果で元の集合を置き換えます。
//emlist[][ruby]{
set = Set['hello', 'world']
set.map! {|str| str.capitalize}
p set # => #<Set: {"Hello", "World"}>
//}
@see Enumerable#collect -
Set
# map! {|o| . . . } -> self (27100.0) -
集合の各要素についてブロックを評価し、その結果で元の集合を置き換えます。
集合の各要素についてブロックを評価し、その結果で元の集合を置き換えます。
//emlist[][ruby]{
set = Set['hello', 'world']
set.map! {|str| str.capitalize}
p set # => #<Set: {"Hello", "World"}>
//}
@see Enumerable#collect -
Set
# merge(enum) -> self (27100.0) -
元の集合に enum で与えられた要素を追加します。
元の集合に enum で与えられた要素を追加します。
引数 enum には each メソッドが定義されている必要があります。
@param enum 追加対象の要素を格納したオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
set = Set[10, 20]
set.merge([10, 30])
p set # => #<Set: {10, 20, 30}>
//} -
Set
# subtract(enum) -> self (27100.0) -
元の集合から、enum で与えられた要素を削除します。
元の集合から、enum で与えられた要素を削除します。
引数 enum には each メソッドが定義されている必要があります。
@param enum 削除対象の要素を格納したオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
set = Set[10, 20, 40]
set.subtract([10, 20, 30])
p set # => #<Set: {40}>
//} -
Set
# ===(o) -> bool (27082.0) -
オブジェクト o がその集合に属する場合に true を返します。
オブジェクト o がその集合に属する場合に true を返します。
@param o オブジェクトを指定します。
//emlist[][ruby]{
set = Set['hello', 'world']
p set.include?('world') # => true
p set.include?('bye') # => false
//} -
Set
# delete _ if {|o| . . . } -> self (27082.0) -
集合の各要素に対してブロックを実行し、その結果が真であるようなすべての 要素を削除します。
集合の各要素に対してブロックを実行し、その結果が真であるようなすべての
要素を削除します。
delete_if は常に self を返します。
reject! は、要素が 1 つ以上削除されれば self を、1 つも削除されなければ
nil を返します。
//emlist[][ruby]{
s1 = Set['hello.rb', 'test.rb', 'hello.rb.bak']
s1.delete_if {|str| str =~ /\.bak\z/}
p s1 # => #<Set: {"hello.rb", "test.rb"}>
s2 = Set['hello.rb',... -
Set
# include?(o) -> bool (27082.0) -
オブジェクト o がその集合に属する場合に true を返します。
オブジェクト o がその集合に属する場合に true を返します。
@param o オブジェクトを指定します。
//emlist[][ruby]{
set = Set['hello', 'world']
p set.include?('world') # => true
p set.include?('bye') # => false
//} -
Set
# member?(o) -> bool (27082.0) -
オブジェクト o がその集合に属する場合に true を返します。
オブジェクト o がその集合に属する場合に true を返します。
@param o オブジェクトを指定します。
//emlist[][ruby]{
set = Set['hello', 'world']
p set.include?('world') # => true
p set.include?('bye') # => false
//} -
Set
# reject! {|o| . . . } -> self | nil (27082.0) -
集合の各要素に対してブロックを実行し、その結果が真であるようなすべての 要素を削除します。
集合の各要素に対してブロックを実行し、その結果が真であるようなすべての
要素を削除します。
delete_if は常に self を返します。
reject! は、要素が 1 つ以上削除されれば self を、1 つも削除されなければ
nil を返します。
//emlist[][ruby]{
s1 = Set['hello.rb', 'test.rb', 'hello.rb.bak']
s1.delete_if {|str| str =~ /\.bak\z/}
p s1 # => #<Set: {"hello.rb", "test.rb"}>
s2 = Set['hello.rb',... -
Set
# <<(o) -> self (27064.0) -
集合にオブジェクト o を加えます。
集合にオブジェクト o を加えます。
add は常に self を返します。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//} -
Set
# add(o) -> self (27064.0) -
集合にオブジェクト o を加えます。
集合にオブジェクト o を加えます。
add は常に self を返します。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//} -
Set
# add?(o) -> self | nil (27064.0) -
集合にオブジェクト o を加えます。
集合にオブジェクト o を加えます。
add は常に self を返します。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//} -
Set
# classify {|o| . . . } -> Hash (27064.0) -
集合をブロックの値によって分類し、結果をハッシュとして返します。
集合をブロックの値によって分類し、結果をハッシュとして返します。
ブロックは集合の各要素について実行され、引数 o にはその要素が
渡されます。
生成されるハッシュのキーはブロックの実行結果、値は分類された集合と
なります。
//emlist[][ruby]{
numbers = Set[10, 4.5, 20, 30, 31.2]
p numbers.classify {|o| o.class}
# => {Integer=>#<Set: {10, 20, 30}>, Float=>#<Set: {4.5, 31.2}>}
//} -
Set
# clear -> self (27064.0) -
集合の要素をすべて削除し、空にした後の self を返します。
集合の要素をすべて削除し、空にした後の self を返します。
//emlist[][ruby]{
p s = Set[10, 20, 30] # => #<Set: {10, 20, 30}>
s.clear
p s # => #<Set: {}>
//} -
Set
# delete(o) -> self (27064.0) -
集合からオブジェクト o を削除します。
集合からオブジェクト o を削除します。
delete は常に self を返します。
delete? は、集合の要素が削除された場合には self を、変化がなかった場合
には nil を返します。
@param o 削除対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[10, 20, 30]
s.delete(10)
p s # => #<Set: {20, 30}>
p s.delete?(20) # => #<Set: {30}>
p s.delete?(10) # => nil
//} -
Set
# delete?(o) -> self | nil (27064.0) -
集合からオブジェクト o を削除します。
集合からオブジェクト o を削除します。
delete は常に self を返します。
delete? は、集合の要素が削除された場合には self を、変化がなかった場合
には nil を返します。
@param o 削除対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[10, 20, 30]
s.delete(10)
p s # => #<Set: {20, 30}>
p s.delete?(20) # => #<Set: {30}>
p s.delete?(10) # => nil
//} -
Set
# replace(enum) -> self (27064.0) -
集合の要素をすべて削除し、enum で与えられた要素に置き換えます。
集合の要素をすべて削除し、enum で与えられた要素に置き換えます。
引数 enum には each メソッドが定義されている必要があります。
@param enum 置き換え後の集合要素を格納するオブジェクトを指定します。
@raise ArgumentError 引数 enum に each メソッドが定義されていない場合に
発生します。
//emlist[][ruby]{
p s = Set[10, 20, 30] # => #<Set: {10, 20, 30}>
s.replace([15, 25])
p s # => #<Set: {15, 25}>
//}
... -
Set
# to _ a -> Array (27064.0) -
self を配列に変換します。要素の順序は不定です。
self を配列に変換します。要素の順序は不定です。
//emlist[][ruby]{
set = Set['hello', 'world']
p set.to_a # => ["hello", "world"]
//} -
Set
# empty? -> bool (27046.0) -
集合が要素を 1 つも持たないときに true を返します。
集合が要素を 1 つも持たないときに true を返します。
//emlist[][ruby]{
p Set[10, 20].empty? # => false
p Set[].empty? # => true
//} -
Set
# inspect -> String (27046.0) -
人間の読みやすい形に表現した文字列を返します。
人間の読みやすい形に表現した文字列を返します。
//emlist[][ruby]{
puts Set.new(['element1', 'element2']).inspect
# => #<Set: {"element1", "element2"}>
//} -
Set
# to _ s -> String (27046.0) -
人間の読みやすい形に表現した文字列を返します。
人間の読みやすい形に表現した文字列を返します。
//emlist[][ruby]{
puts Set.new(['element1', 'element2']).inspect
# => #<Set: {"element1", "element2"}>
//} -
Set
# each {|o| . . . } -> self (27028.0) -
集合の各要素についてブロックを実行します。
集合の各要素についてブロックを実行します。
//emlist[][ruby]{
s = Set[10, 20]
ary = []
s.each {|num| ary << num + 1}
p ary # => [11, 21]
//} -
Set
# length -> Integer (27028.0) -
集合の要素数を返します。
集合の要素数を返します。
//emlist[][ruby]{
p Set[10, 20, 30, 10].size # => 3
//} -
Set
# size -> Integer (27028.0) -
集合の要素数を返します。
集合の要素数を返します。
//emlist[][ruby]{
p Set[10, 20, 30, 10].size # => 3
//} -
Set
# filter! {|element| . . . } -> self | nil (27010.0) -
各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。
各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。
@return 変更があった場合は self を、変更がなかった場合は nil を返します。 -
Set
# keep _ if {|element| . . . } -> self (27010.0) -
各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。
各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。
@return 常に self を返します。 -
Set
# select! {|element| . . . } -> self | nil (27010.0) -
各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。
各要素に対してブロックを評価し、その結果が偽であった要素を self から削除します。
@return 変更があった場合は self を、変更がなかった場合は nil を返します。 -
Enumerable
# to _ set(klass = Set , *args) -> Set (19090.0) -
Enumerable オブジェクトの要素から、新しい集合オブジェクトを作ります。
Enumerable オブジェクトの要素から、新しい集合オブジェクトを作ります。
引数 klass を与えた場合、Set クラスの代わりに、指定した集合クラスの
インスタンスを作ります。
この引数を指定することで、ユーザ定義の集合クラスのインスタンスを作ることができます
(ここでいう集合クラスとは、Setとメソッド/クラスメソッドで互換性のあるクラスです。
Ruby 2.7 以前は SortedSet が定義されていました)。
引数 args およびブロックは、集合オブジェクトを生成するための new
メソッドに渡されます。
@param klass 生成する集合クラスを指定します... -
Enumerable
# to _ set(klass = Set , *args) {|o| . . . } -> Set (19090.0) -
Enumerable オブジェクトの要素から、新しい集合オブジェクトを作ります。
Enumerable オブジェクトの要素から、新しい集合オブジェクトを作ります。
引数 klass を与えた場合、Set クラスの代わりに、指定した集合クラスの
インスタンスを作ります。
この引数を指定することで、ユーザ定義の集合クラスのインスタンスを作ることができます
(ここでいう集合クラスとは、Setとメソッド/クラスメソッドで互換性のあるクラスです。
Ruby 2.7 以前は SortedSet が定義されていました)。
引数 args およびブロックは、集合オブジェクトを生成するための new
メソッドに渡されます。
@param klass 生成する集合クラスを指定します... -
Module
# const _ set(name , value) -> object (18385.0) -
モジュールに name で指定された名前の定数を value とい う値として定義し、value を返します。
モジュールに name で指定された名前の定数を value とい
う値として定義し、value を返します。
そのモジュールにおいてすでにその名前の定数が定義されている場合、警
告メッセージが出力されます。
@param name Symbol,String で定数の名前を指定します。
@param value セットしたい値を指定します。
//emlist[例][ruby]{
module Foo; end
# Symbolを指定した場合
Foo.const_set(:FOO, 123)
Foo::FOO # => 123
# Stringを指定した場合
Foo.const_... -
Thread
# set _ trace _ func(pr) -> Proc | nil (18385.0) -
スレッドにトレース用ハンドラを設定します。
スレッドにトレース用ハンドラを設定します。
nil を渡すとトレースを解除します。
設定したハンドラを返します。
//emlist[例][ruby]{
th = Thread.new do
class Trace
end
2.to_s
Thread.current.set_trace_func nil
3.to_s
end
th.set_trace_func lambda {|*arg| p arg }
th.join
# => ["line", "example.rb", 2, nil, #<Binding:0x00007fc8de87cb08>, nil]
#... -
Binding
# local _ variable _ set(symbol , obj) (18367.0) -
引数 symbol で指定した名前のローカル変数に引数 obj を設定します。
引数 symbol で指定した名前のローカル変数に引数 obj を設定します。
@param symbol ローカル変数名を Symbol オブジェクトで指定します。
@param obj 引数 symbol で指定したローカル変数に設定するオブジェクトを指定します。
//emlist[例][ruby]{
def foo
a = 1
bind = binding
bind.local_variable_set(:a, 2) # set existing local variable `a'
bind.local_variable_set(:b, 3) # create ... -
IO
# set _ encoding _ by _ bom -> Encoding | nil (18349.0) -
BOM から IO のエンコーディングを設定します。
BOM から IO のエンコーディングを設定します。
自身が BOM から始まる場合、BOM を読み進めて外部エンコーディングをセットし、セットしたエンコーディングを返します。
BOM が見つからなかった場合は nil を返します。
自身がバイナリモードでないかすでにエンコーディングがセットされている場合、例外が発生します。
//emlist[例][ruby]{
File.write("bom.txt", "\u{FEFF}abc")
File.open("bom.txt", "rb") do |io|
p io.set_encoding_by_bom #=> #<Enco... -
Object
# instance _ variable _ set(var , value) -> object (18349.0) -
オブジェクトのインスタンス変数 var に値 value を設定します。
オブジェクトのインスタンス変数 var に値 value を設定します。
インスタンス変数が定義されていなければ新たに定義されます。
@param var インスタンス変数名を文字列か Symbol で指定します。
@param value 設定する値です。
@return value を返します。
//emlist[][ruby]{
obj = Object.new
p obj.instance_variable_set("@foo", 1) #=> 1
p obj.instance_variable_set(:@foo, 2) #=> 2
p obj.instance_var... -
Thread
# thread _ variable _ set(key , value) (18349.0) -
引数 key で指定した名前のスレッドローカル変数に引数 value をセットしま す。
引数 key で指定した名前のスレッドローカル変数に引数 value をセットしま
す。
[注意]: Thread#[] でセットしたローカル変数(Fiber ローカル変数)と
異なり、セットした変数は Fiber を切り替えても共通で使える事に注意してく
ださい。
//emlist[例][ruby]{
thr = Thread.new do
Thread.current.thread_variable_set(:cat, 'meow')
Thread.current.thread_variable_set("dog", 'woof')
end
thr.join ... -
ARGF
. class # set _ encoding(enc _ str , options = {}) -> self (18337.0) -
ARGF の外部/内部エンコーディングを設定します。 次以降に処理するファイルにも同じ設定が適用されます。
ARGF の外部/内部エンコーディングを設定します。
次以降に処理するファイルにも同じ設定が適用されます。
外部エンコーディングは ARGF を介して読み込むファイルの、
内部エンコーディングは読み込んだ文字列のエンコーディングです。
詳しくは IO#set_encoding を参照してください。
@param enc_str 外部/内部エンコーディングを"A:B" のようにコロンで
区切って指定します。
@param ext_enc 外部エンコーディングを表す文字列か
Encoding オブジェクトを指定します。
@para... -
ARGF
. class # set _ encoding(ext _ enc) -> self (18337.0) -
ARGF の外部/内部エンコーディングを設定します。 次以降に処理するファイルにも同じ設定が適用されます。
ARGF の外部/内部エンコーディングを設定します。
次以降に処理するファイルにも同じ設定が適用されます。
外部エンコーディングは ARGF を介して読み込むファイルの、
内部エンコーディングは読み込んだ文字列のエンコーディングです。
詳しくは IO#set_encoding を参照してください。
@param enc_str 外部/内部エンコーディングを"A:B" のようにコロンで
区切って指定します。
@param ext_enc 外部エンコーディングを表す文字列か
Encoding オブジェクトを指定します。
@para... -
ARGF
. class # set _ encoding(ext _ enc , int _ enc , options = {}) -> self (18337.0) -
ARGF の外部/内部エンコーディングを設定します。 次以降に処理するファイルにも同じ設定が適用されます。
ARGF の外部/内部エンコーディングを設定します。
次以降に処理するファイルにも同じ設定が適用されます。
外部エンコーディングは ARGF を介して読み込むファイルの、
内部エンコーディングは読み込んだ文字列のエンコーディングです。
詳しくは IO#set_encoding を参照してください。
@param enc_str 外部/内部エンコーディングを"A:B" のようにコロンで
区切って指定します。
@param ext_enc 外部エンコーディングを表す文字列か
Encoding オブジェクトを指定します。
@para... -
IO
# set _ encoding(enc _ str , **opts) -> self (18337.0) -
IO のエンコーディングを設定します。
IO のエンコーディングを設定します。
引数が "A:B" のようにコロンで区切られた文字列の場合は、
A を外部エンコーディング、 B を内部エンコーディングに指定します。
引数が一つで、上のような形式でない場合には、
それが外部エンコーディングと見なされます。
引数が2つの場合はそのそれぞれを外部エンコーディング、内部エンコーディング
に設定します。
キーワード引数で外部エンコーディングを内部エンコーディングに変換する際の
オプションを指定します。
詳しくは String#encode を参照してください。
@param enc_str エンコーディングを表す文字列を指定します... -
IO
# set _ encoding(ext _ enc) -> self (18337.0) -
IO のエンコーディングを設定します。
IO のエンコーディングを設定します。
引数が "A:B" のようにコロンで区切られた文字列の場合は、
A を外部エンコーディング、 B を内部エンコーディングに指定します。
引数が一つで、上のような形式でない場合には、
それが外部エンコーディングと見なされます。
引数が2つの場合はそのそれぞれを外部エンコーディング、内部エンコーディング
に設定します。
キーワード引数で外部エンコーディングを内部エンコーディングに変換する際の
オプションを指定します。
詳しくは String#encode を参照してください。
@param enc_str エンコーディングを表す文字列を指定します... -
IO
# set _ encoding(ext _ enc , int _ enc , **opts) -> self (18337.0) -
IO のエンコーディングを設定します。
IO のエンコーディングを設定します。
引数が "A:B" のようにコロンで区切られた文字列の場合は、
A を外部エンコーディング、 B を内部エンコーディングに指定します。
引数が一つで、上のような形式でない場合には、
それが外部エンコーディングと見なされます。
引数が2つの場合はそのそれぞれを外部エンコーディング、内部エンコーディング
に設定します。
キーワード引数で外部エンコーディングを内部エンコーディングに変換する際の
オプションを指定します。
詳しくは String#encode を参照してください。
@param enc_str エンコーディングを表す文字列を指定します... -
Exception
# set _ backtrace(errinfo) -> nil | String | [String] (18331.0) -
バックトレース情報に errinfo を設定し、設定されたバックトレース 情報を返します。
バックトレース情報に errinfo を設定し、設定されたバックトレース
情報を返します。
@param errinfo nil、String あるいは String の配列のいずれかを指定します。
//emlist[例][ruby]{
begin
begin
raise "inner"
rescue
raise "outer"
end
rescue
$!.backtrace # => ["/path/to/test.rb:5:in `rescue in <main>'", "/path/to/test.rb:2:in `<main>'"]
$!.se... -
Module
# class _ variable _ set(name , val) -> object (18331.0) -
クラス/モジュールにクラス変数 name を定義して、その値として val をセットします。val を返します。
クラス/モジュールにクラス変数 name を定義して、その値として
val をセットします。val を返します。
@param name String または Symbol を指定します。
//emlist[例][ruby]{
class Fred
@@foo = 99
def foo
@@foo
end
end
def Fred.foo(val)
class_variable_set(:@@foo, val)
end
p Fred.foo(101) # => 101
p Fred.new.foo # => 101
//} -
File
:: Stat # setgid? -> bool (18310.0) -
setgidされている時に真を返します。
setgidされている時に真を返します。
//emlist[][ruby]{
Dir.glob("/usr/sbin/*") {|bd|
if File::Stat.new(bd).setgid?
puts bd
end
}
#例
#...
#=> /usr/sbin/postqueue
#...
//} -
File
:: Stat # setuid? -> bool (18310.0) -
setuidされている時に真を返します。
setuidされている時に真を返します。
//emlist[][ruby]{
Dir.glob("/bin/*") {|bd|
if File::Stat.new(bd).setuid?
puts bd
end
}
#例
#...
#=> /bin/ping
#=> /bin/su
#...
//} -
MatchData
# byteoffset(n) -> [Integer , Integer] | [nil , nil] (18310.0) -
n 番目の部分文字列のバイト単位のオフセットの 配列 [start, end] を返します。
n 番目の部分文字列のバイト単位のオフセットの
配列 [start, end] を返します。
n番目の部分文字列がマッチしていなければ [nil, nil] を返します。
@param n 部分文字列を指定する数値
@raise IndexError 範囲外の n を指定した場合に発生します。
@see MatchData#offset -
MatchData
# byteoffset(name) -> [Integer , Integer] | [nil , nil] (18310.0) -
name という名前付きグループに対応する部分文字列のバイト単位のオフセットの 配列 [start, end] を返します。
name という名前付きグループに対応する部分文字列のバイト単位のオフセットの
配列 [start, end] を返します。
nameの名前付きグループにマッチした部分文字列がなければ
[nil, nil] を返します。
@param name 名前(シンボルか文字列)
@raise IndexError 正規表現中で定義されていない name を指定した場合に発生します。
//emlist[例][ruby]{
/(?<year>\d{4})年(?<month>\d{1,2})月(?:(?<day>\d{1,2})日)?/ =~ "2021年1月"
p $~.byteoffset('... -
MatchData
# offset(n) -> [Integer , Integer] | [nil , nil] (18310.0) -
n 番目の部分文字列のオフセットの配列 [start, end] を返 します。
n 番目の部分文字列のオフセットの配列 [start, end] を返
します。
//emlist[例][ruby]{
[ self.begin(n), self.end(n) ]
//}
と同じです。n番目の部分文字列がマッチしていなければ
[nil, nil] を返します。
@param n 部分文字列を指定する数値
@raise IndexError 範囲外の n を指定した場合に発生します。
@see MatchData#begin, MatchData#end, MatchData#byteoffset -
MatchData
# offset(name) -> [Integer , Integer] | [nil , nil] (18310.0) -
name という名前付きグループに対応する部分文字列のオフセットの配列 [start, end] を返 します。
name という名前付きグループに対応する部分文字列のオフセットの配列 [start, end] を返
します。
//emlist[例][ruby]{
[ self.begin(name), self.end(name) ]
//}
と同じです。nameの名前付きグループにマッチした部分文字列がなければ
[nil, nil] を返します。
@param name 名前(シンボルか文字列)
@raise IndexError 正規表現中で定義されていない name を指定した場合に発生します。
//emlist[例][ruby]{
/(?<year>\d{4})年(?<month>\... -
String
# setbyte(index , b) -> Integer (18310.0) -
index バイト目のバイトを b に変更します。
index バイト目のバイトを b に変更します。
index に負を指定すると末尾から数えた位置を変更します。
セットした値を返します。
@param index バイトをセットする位置
@param b セットするバイト(0 から 255 までの整数)
@raise IndexError 範囲外に値をセットしようとした場合に発生します。
//emlist[例][ruby]{
s = "Sunday"
s.setbyte(0, 77)
s.setbyte(-5, 111)
s # => "Monday"
//} -
Time
# gmt _ offset -> Integer (18310.0) -
協定世界時との時差を秒を単位とする数値として返します。
協定世界時との時差を秒を単位とする数値として返します。
地方時が協定世界時よりも進んでいる場合(アジア、オーストラリアなど)
には正の値、遅れている場合(アメリカなど)には負の値になります。
//emlist[地方時の場合][ruby]{
p Time.now.zone # => "JST"
p Time.now.utc_offset # => 32400
//}
タイムゾーンが協定世界時に設定されている場合は 0 を返します。
//emlist[協定世界時の場合][ruby]{
p Time.now.getgm.zone # => "UTC"
p Ti... -
Time
# utc _ offset -> Integer (18310.0) -
協定世界時との時差を秒を単位とする数値として返します。
協定世界時との時差を秒を単位とする数値として返します。
地方時が協定世界時よりも進んでいる場合(アジア、オーストラリアなど)
には正の値、遅れている場合(アメリカなど)には負の値になります。
//emlist[地方時の場合][ruby]{
p Time.now.zone # => "JST"
p Time.now.utc_offset # => 32400
//}
タイムゾーンが協定世界時に設定されている場合は 0 を返します。
//emlist[協定世界時の場合][ruby]{
p Time.now.getgm.zone # => "UTC"
p Ti... -
Time
# gmtoff -> Integer (9010.0) -
協定世界時との時差を秒を単位とする数値として返します。
協定世界時との時差を秒を単位とする数値として返します。
地方時が協定世界時よりも進んでいる場合(アジア、オーストラリアなど)
には正の値、遅れている場合(アメリカなど)には負の値になります。
//emlist[地方時の場合][ruby]{
p Time.now.zone # => "JST"
p Time.now.utc_offset # => 32400
//}
タイムゾーンが協定世界時に設定されている場合は 0 を返します。
//emlist[協定世界時の場合][ruby]{
p Time.now.getgm.zone # => "UTC"
p Ti... -
IO
# seek(offset , whence = IO :: SEEK _ SET) -> 0 (649.0) -
ファイルポインタを whence の位置から offset だけ移動させます。 offset 位置への移動が成功すれば 0 を返します。
ファイルポインタを whence の位置から offset だけ移動させます。
offset 位置への移動が成功すれば 0 を返します。
@param offset ファイルポインタを移動させるオフセットを整数で指定します。
@param whence 値は以下のいずれかです。
それぞれ代わりに :SET、:CUR、:END、:DATA、:HOLE を指定す
る事も可能です。
* IO::SEEK_SET: ファイルの先頭から (デフォルト)
* IO::SEEK_CUR: 現在のファイルポインタから
* IO::SE... -
IO
# sysseek(offset , whence = IO :: SEEK _ SET) -> Integer (649.0) -
lseek(2) と同じです。IO#seek では、 IO#sysread, IO#syswrite と併用すると正しく動作しないので代わりにこのメソッドを使います。 位置 offset への移動が成功すれば移動した位置(ファイル先頭からのオフセット)を返します。
lseek(2) と同じです。IO#seek では、
IO#sysread, IO#syswrite と併用すると正しく動作しないので代わりにこのメソッドを使います。
位置 offset への移動が成功すれば移動した位置(ファイル先頭からのオフセット)を返します。
書き込み用にバッファリングされた IO に対して実行すると警告が出ます。
File.open("/dev/zero") {|f|
buf = f.read(3)
f.sysseek(0)
}
# => -:3:in `sysseek': sysseek for buffered IO (IOErro... -
ARGF
. class # seek(offset , whence = IO :: SEEK _ SET) -> 0 (613.0) -
ARGFが現在開いているファイルのファイルポインタを whence の位置から offset だけ移動させます。 offset 位置への移動が成功すれば 0 を返します。
ARGFが現在開いているファイルのファイルポインタを whence の位置から
offset だけ移動させます。 offset 位置への移動が成功すれば 0 を返します。
@param offset ファイルポインタを移動させるオフセットを整数で指定します。
@param whence IO#seek を参照。
@see IO#seek -
Encoding
:: Converter # primitive _ convert(source _ buffer , destination _ buffer , destination _ byteoffset) -> Symbol (310.0) -
エンコーディング変換のためのメソッドの中で、もっとも細かな扱いが可能なメソッドです。
エンコーディング変換のためのメソッドの中で、もっとも細かな扱いが可能なメソッドです。
可搬性を確保しつつ、不正なバイトや変換先で未定義な文字の扱いを細かに指定したいときは、Encoding::Converter#primitive_convert が唯一の方法になります。
@param source_buffer 変換元文字列のバッファ
@param destination_buffer 変換先文字列を格納するバッファ
@param destination_byteoffset 変換先バッファでのオフセット
@param destination_bytesize 変換先バッファの容量
@... -
Encoding
:: Converter # primitive _ convert(source _ buffer , destination _ buffer , destination _ byteoffset , destination _ bytesize) -> Symbol (310.0) -
エンコーディング変換のためのメソッドの中で、もっとも細かな扱いが可能なメソッドです。
エンコーディング変換のためのメソッドの中で、もっとも細かな扱いが可能なメソッドです。
可搬性を確保しつつ、不正なバイトや変換先で未定義な文字の扱いを細かに指定したいときは、Encoding::Converter#primitive_convert が唯一の方法になります。
@param source_buffer 変換元文字列のバッファ
@param destination_buffer 変換先文字列を格納するバッファ
@param destination_byteoffset 変換先バッファでのオフセット
@param destination_bytesize 変換先バッファの容量
@... -
Encoding
:: Converter # primitive _ convert(source _ buffer , destination _ buffer , destination _ byteoffset , destination _ bytesize , options) -> Symbol (310.0) -
エンコーディング変換のためのメソッドの中で、もっとも細かな扱いが可能なメソッドです。
エンコーディング変換のためのメソッドの中で、もっとも細かな扱いが可能なメソッドです。
可搬性を確保しつつ、不正なバイトや変換先で未定義な文字の扱いを細かに指定したいときは、Encoding::Converter#primitive_convert が唯一の方法になります。
@param source_buffer 変換元文字列のバッファ
@param destination_buffer 変換先文字列を格納するバッファ
@param destination_byteoffset 変換先バッファでのオフセット
@param destination_bytesize 変換先バッファの容量
@... -
Enumerator
# with _ index(offset = 0) -> Enumerator (310.0) -
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。 インデックスは offset から始まります。
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。
インデックスは offset から始まります。
ブロックを指定した場合の戻り値は生成時に指定したレシーバ自身です。
//emlist[例][ruby]{
str = "xyz"
enum = Enumerator.new {|y| str.each_byte {|b| y << b }}
enum.with_index {|byte, idx| p [byte, idx] }
# => [120, 0]
# [121, 1]
# [122, 2]
require "stringi... -
Enumerator
# with _ index(offset = 0) {|(*args) , idx| . . . } -> object (310.0) -
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。 インデックスは offset から始まります。
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。
インデックスは offset から始まります。
ブロックを指定した場合の戻り値は生成時に指定したレシーバ自身です。
//emlist[例][ruby]{
str = "xyz"
enum = Enumerator.new {|y| str.each_byte {|b| y << b }}
enum.with_index {|byte, idx| p [byte, idx] }
# => [120, 0]
# [121, 1]
# [122, 2]
require "stringi... -
Enumerator
:: Lazy # with _ index(offset = 0) -> Enumerator :: Lazy (310.0) -
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。 インデックスは offset から始まります。
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。
インデックスは offset から始まります。
ブロックを指定した場合の戻り値は生成時に指定したレシーバ自身です。
//emlist[][ruby]{
("a"..).lazy.with_index(1) { |it, index| puts "#{index}:#{it}" }.take(3).force
# => 1:a
# 2:b
# 3:c
//}
@see Enumerator#with_index -
Enumerator
:: Lazy # with _ index(offset = 0) {|(*args) , idx| . . . } -> Enumerator :: Lazy (310.0) -
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。 インデックスは offset から始まります。
生成時のパラメータに従って、要素にインデックスを添えて繰り返します。
インデックスは offset から始まります。
ブロックを指定した場合の戻り値は生成時に指定したレシーバ自身です。
//emlist[][ruby]{
("a"..).lazy.with_index(1) { |it, index| puts "#{index}:#{it}" }.take(3).force
# => 1:a
# 2:b
# 3:c
//}
@see Enumerator#with_index -
IO
# advise(advice , offset=0 , len=0) -> nil (310.0) -
posix_fadvise(2) を呼びだし、 ファイルへのアクセスパターンをOSに知らせます。
posix_fadvise(2) を呼びだし、
ファイルへのアクセスパターンをOSに知らせます。
advice には以下のいずれかのシンボルを指定します。
* :normal - デフォルト
* :sequential - データは前から順にアクセスされる
* :random - データはランダムアクセスされる
* :willneed - データはこの直後にアクセスされる
* :dontneed - データは直後にはアクセスしない
* :noreuse - データは一度しかアクセスされない
これらの advice が具体的に何をするのかはプラットフォーム依存です。
... -
IO
# pread(maxlen , offset , outbuf = "") -> string (310.0) -
preadシステムコールを使ってファイルポインタを変更せずに、また現在のファイルポインタに 依存せずにmaxlenバイト読み込みます。
preadシステムコールを使ってファイルポインタを変更せずに、また現在のファイルポインタに
依存せずにmaxlenバイト読み込みます。
IO#seekとIO#readの組み合わせと比べて、アトミックな操作に
なるという点が優れていて、複数スレッド/プロセスから同じIOオブジェクトを
様々な位置から読み込むことを許します。
どのユーザー空間のIO層のバッファリングもバイパスします。
@param maxlen 読み込むバイト数を指定します。
@param offset 読み込み開始位置のファイルの先頭からのオフセットを指定します。
@param outbuf データを受け取る String... -
IO
# pwrite(string , offset) -> Integer (310.0) -
stringをoffsetの位置にpwrite()システムコールを使って書き込みます。
stringをoffsetの位置にpwrite()システムコールを使って書き込みます。
IO#seekとIO#writeの組み合わせと比べて、アトミックな操作に
なるという点が優れていて、複数スレッド/プロセスから同じIOオブジェクトを
様々な位置から読み込むことを許します。
どのユーザー空間のIO層のバッファリングもバイパスします。
@param string 書き込む文字列を指定します。
@param offset ファイルポインタを変えずに書き込む位置を指定します。
@return 書き込んだバイト数を返します。
@raise Errno::EXXX シークまたは書き込みが失敗し... -
String
# byteindex(pattern , offset = 0) -> Integer | nil (310.0) -
文字列の offset から右に向かって pattern を検索し、 最初に見つかった部分文字列の左端のバイト単位のインデックスを返します。 見つからなければ nil を返します。
文字列の offset から右に向かって pattern を検索し、
最初に見つかった部分文字列の左端のバイト単位のインデックスを返します。
見つからなければ nil を返します。
引数 pattern は探索する部分文字列または正規表現で指定します。
offset が負の場合、文字列の末尾から数えた位置から探索します。
@param pattern 探索する部分文字列または正規表現
@param offset 探索を開始するバイト単位のオフセット
@raise IndexError オフセットが文字列の境界以外をさしているときに発生します。
//emlist[例][... -
String
# byterindex(pattern , offset = self . bytesize) -> Integer | nil (310.0) -
文字列のバイト単位のインデックス offset から左に向かって pattern を探索します。 最初に見つかった部分文字列の左端のバイト単位のインデックスを返します。 見つからなければ nil を返します。
文字列のバイト単位のインデックス offset から左に向かって pattern を探索します。
最初に見つかった部分文字列の左端のバイト単位のインデックスを返します。
見つからなければ nil を返します。
引数 pattern は探索する部分文字列または正規表現で指定します。
offset が負の場合は、文字列の末尾から数えた位置から探索します。
byterindex と String#byteindex とでは、探索方向だけが逆になります。
完全に左右が反転した動作をするわけではありません。
探索はその開始位置を右から左にずらしながら行いますが、
部分文字列の照合はどちらのメソッ... -
Time
# getlocal(utc _ offset) -> Time (310.0) -
タイムゾーンを地方時に設定した Time オブジェクトを新しく生成 して返します。
タイムゾーンを地方時に設定した Time オブジェクトを新しく生成
して返します。
@param utc_offset タイムゾーンを地方時に設定する代わりに協定世界時との
時差を、秒を単位とする整数か、"+HH:MM" "-HH:MM" 形式
の文字列で指定します。
//emlist[][ruby]{
p t = Time.utc(2000,1,1,20,15,1) # => 2000-01-01 20:15:01 UTC
p t.utc? # => true
p... -
Time
# localtime(utc _ offset) -> self (310.0) -
タイムゾーンを地方時に設定します。
タイムゾーンを地方時に設定します。
このメソッドを呼び出した後は時刻変換を協定地方時として行ないます。
@param utc_offset タイムゾーンを地方時に設定する代わりに協定世界時との
時差を、秒を単位とする整数か、"+HH:MM" "-HH:MM" 形式
の文字列で指定します。
Time#localtime, Time#gmtime の挙動はシステムの
localtime(3) の挙動に依存します。Time クラ
スでは時刻を起算時からの経過秒数として保持していますが、ある特定の
時刻までの経過秒は、シス... -
Enumerable
# any? -> bool (154.0) -
すべての要素が偽である場合に false を返します。 真である要素があれば、ただちに true を返します。
すべての要素が偽である場合に false を返します。
真である要素があれば、ただちに true を返します。
ブロックを伴う場合は、各要素に対してブロックを評価し、すべての結果
が偽である場合に false を返します。ブロックが真を返した時点
で、ただちに true を返します。
自身に要素が存在しない場合は false を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
p Set[1, 2, 3].any? {|v| v > 3 } ... -
Enumerable
# any? {|item| . . . } -> bool (154.0) -
すべての要素が偽である場合に false を返します。 真である要素があれば、ただちに true を返します。
すべての要素が偽である場合に false を返します。
真である要素があれば、ただちに true を返します。
ブロックを伴う場合は、各要素に対してブロックを評価し、すべての結果
が偽である場合に false を返します。ブロックが真を返した時点
で、ただちに true を返します。
自身に要素が存在しない場合は false を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
p Set[1, 2, 3].any? {|v| v > 3 } ... -
Enumerable
# any?(pattern) -> bool (154.0) -
すべての要素が偽である場合に false を返します。 真である要素があれば、ただちに true を返します。
すべての要素が偽である場合に false を返します。
真である要素があれば、ただちに true を返します。
ブロックを伴う場合は、各要素に対してブロックを評価し、すべての結果
が偽である場合に false を返します。ブロックが真を返した時点
で、ただちに true を返します。
自身に要素が存在しない場合は false を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
p Set[1, 2, 3].any? {|v| v > 3 } ... -
Enumerable
# none? -> bool (154.0) -
ブロックを指定しない場合は、 Enumerable オブジェクトのすべての 要素が偽であれば真を返します。そうでなければ偽を返します。
ブロックを指定しない場合は、 Enumerable オブジェクトのすべての
要素が偽であれば真を返します。そうでなければ偽を返します。
ブロックを指定した場合は、Enumerable オブジェクトのすべての要素を
ブロックで評価した結果が、すべて偽であれば真を返します。
そうでなければ偽を返します。
自身に要素が存在しない場合は true を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
Set['ant', 'bear', 'cat'].no... -
Enumerable
# none? {|obj| . . . } -> bool (154.0) -
ブロックを指定しない場合は、 Enumerable オブジェクトのすべての 要素が偽であれば真を返します。そうでなければ偽を返します。
ブロックを指定しない場合は、 Enumerable オブジェクトのすべての
要素が偽であれば真を返します。そうでなければ偽を返します。
ブロックを指定した場合は、Enumerable オブジェクトのすべての要素を
ブロックで評価した結果が、すべて偽であれば真を返します。
そうでなければ偽を返します。
自身に要素が存在しない場合は true を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
Set['ant', 'bear', 'cat'].no... -
Enumerable
# none?(pattern) -> bool (154.0) -
ブロックを指定しない場合は、 Enumerable オブジェクトのすべての 要素が偽であれば真を返します。そうでなければ偽を返します。
ブロックを指定しない場合は、 Enumerable オブジェクトのすべての
要素が偽であれば真を返します。そうでなければ偽を返します。
ブロックを指定した場合は、Enumerable オブジェクトのすべての要素を
ブロックで評価した結果が、すべて偽であれば真を返します。
そうでなければ偽を返します。
自身に要素が存在しない場合は true を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
Set['ant', 'bear', 'cat'].no... -
Enumerable
# one? -> bool (154.0) -
ブロックを指定しない場合は、 Enumerable オブジェクトの要素のうち ちょうど一つだけが真であれば、真を返します。 そうでなければ偽を返します。
ブロックを指定しない場合は、 Enumerable オブジェクトの要素のうち
ちょうど一つだけが真であれば、真を返します。
そうでなければ偽を返します。
ブロックを指定した場合は、Enumerable オブジェクトの要素を
ブロックで評価した結果、一つの要素だけが真であれば真を返します。
そうでなければ偽を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
Set['ant', 'bear', 'cat'].one? {|word| word.le... -
Enumerable
# one? {|obj| . . . } -> bool (154.0) -
ブロックを指定しない場合は、 Enumerable オブジェクトの要素のうち ちょうど一つだけが真であれば、真を返します。 そうでなければ偽を返します。
ブロックを指定しない場合は、 Enumerable オブジェクトの要素のうち
ちょうど一つだけが真であれば、真を返します。
そうでなければ偽を返します。
ブロックを指定した場合は、Enumerable オブジェクトの要素を
ブロックで評価した結果、一つの要素だけが真であれば真を返します。
そうでなければ偽を返します。
@param pattern ブロックの代わりに各要素に対して pattern === item を評価します。
//emlist[例][ruby]{
require 'set'
Set['ant', 'bear', 'cat'].one? {|word| word.le...