63件ヒット
[1-63件を表示]
(0.078秒)
検索結果
先頭5件
-
Integer
# ceildiv(other) -> Integer (6102.0) -
self を other で割り、その(剰余を考えない)商を整数に切り上げたものを返します。 すなわち、self を other で割った商を q とすると、q 以上で最小の整数を返します。
...r で割った商を q とすると、q 以上で最小の整数を返します。
@param other self を割る数を指定します。
//emlist[][ruby]{
3.ceildiv(3) # => 1
4.ceildiv(3) # => 2
5.ceildiv(3) # => 2
3.ceildiv(1.2) # => 3
-5.ceildiv(3) # => -1
-5.ceildiv(-3) # => 2
//}... -
Integer
# div(other) -> Integer (6102.0) -
整商(整数の商)を返します。 普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。
...が Integer オブジェクトの場合、Integer#/ の結果と一致します。
div に対応する剰余メソッドは modulo です。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[例][ruby]{
7.div(2) # => 3
7.div(-2) # => -4
7.div(2.0) # => 3
7.div(Rat......=> 3
begin
2.div(0)
rescue => e
e # => #<ZeroDivisionError: divided by 0>
end
begin
2.div(0.0)
rescue => e
e # => #<ZeroDivisionError: divided by 0>
# Integer#/ と違い、引数が Float でもゼロで割ることはできない
end
//}
@see Integer#fdiv, Integer#/, Integer#modulo... -
Integer
# divmod(other) -> [Integer , Numeric] (6102.0) -
self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
...self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
@param other self を割る数。
@see Numeric#divmod... -
Integer
# even? -> bool (6102.0) -
自身が偶数であれば真を返します。 そうでない場合は偽を返します。
...自身が偶数であれば真を返します。
そうでない場合は偽を返します。
//emlist[][ruby]{
10.even? # => true
5.even? # => false
//}... -
Integer
# fdiv(other) -> Numeric (6102.0) -
self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。
...指定します。
例:
654321.fdiv(13731) # => 47.652829364212366
654321.fdiv(13731.24) # => 47.65199646936475
-1234567890987654321.fdiv(13731) # => -89910996357705.52
-1234567890987654321.fdiv(13731.24) # => -89909424858035.72
@see Numeric#quo, Numeric#div, Integer#div... -
Integer
# prime _ division(generator = Prime :: Generator23 . new) -> [[Integer , Integer]] (6102.0) -
自身を素因数分解した結果を返します。
...、第2要素は n**e が self を割り切る最大の自然数 e です。
@raise ZeroDivisionError self がゼロである場合に発生します。
@see Prime#prime_division
//emlist[例][ruby]{
require 'prime'
12.prime_division #=> [[2,2], [3,1]]
10.prime_division #=> [[2,1], [5,1]]
//}...