るりまサーチ

最速Rubyリファレンスマニュアル検索!
338件ヒット [101-200件を表示] (0.180秒)

別のキーワード

  1. openssl t61string
  2. asn1 t61string
  3. matrix t
  4. t61string new
  5. fiddle type_size_t

ライブラリ

クラス

キーワード

検索結果

<< < 1 2 3 4 > >>

Float#divmod(other) -> [Numeric] (9207.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

...other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。

ここで、商 q と余り r は、

* self == other * q + r

* other > 0 のとき: 0 <= r < othe...
...r
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
このメソッドは、メソッド / と % によって定義されています。

@param other 自身を割る数を指定します。

//emlist[例][ruby]{
11.divmod(3) # => [3, 2]
(11.5).divmod(3.5)...
...# => [3, 1.0]
11.divmod(-3) # => [-4, -1]
11.divmod(3.5) # => [3, 0.5]
(-11).divmod(3.5) # => [-4, 3.0]
//}

@see Numeric#div, Numeric#modulo...

Integer#ceildiv(other) -> Integer (9201.0)

self を other で割り、その(剰余を考えない)商を整数に切り上げたものを返します。 すなわち、self を other で割った商を q とすると、q 以上で最小の整数を返します。

...other で割り、その(剰余を考えない)商を整数に切り上げたものを返します。
すなわち、self を other で割った商を q とすると、q 以上で最小の整数を返します。

@param other self を割る数を指定します。

//emlist[][ruby]{
3.ceildiv(3)...
...# => 1
4.ceildiv(3) # => 2
5.ceildiv(3) # => 2
3.ceildiv(1.2) # => 3
-5.ceildiv(3) # => -1
-5.ceildiv(-3) # => 2
//}...

Integer#divmod(other) -> [Integer, Numeric] (9201.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

...self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

@param other self を割る数。

@see Numeric#divmod...

Rational#fdiv(other) -> Float (9201.0)

self を other で割った商を Float で返します。 other に虚数を指定することは出来ません。

...self を other で割った商を Float で返します。
other に虚数を指定することは出来ません。

@param other 自身を割る数

//emlist[例][ruby]{
Rational(2, 3).fdiv(1) # => 0.6666666666666666
Rational(2, 3).fdiv(0.5) # => 1.3333333333333333
Rational(2).fdiv(3) # =>...
...0.6666666666666666

Rational(1).fdiv(Complex(1, 0)) # => 1.0
Rational(1).fdiv(Complex(0, 1)) # => RangeError
//}...

Set#divide {|o1, o2| ... } -> Set (9201.0)

元の集合をブロックで定義される関係で分割し、その結果を集合として返します。

...st[例1][ruby]{
require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set...
...{#<Set: {1}>,
# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'

board = Set.new...
...nd
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2,...
...//emlist[例1][ruby]{
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,...
...# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j...

絞り込み条件を変える

Set#divide {|o| ... } -> Set (9201.0)

元の集合をブロックで定義される関係で分割し、その結果を集合として返します。

...st[例1][ruby]{
require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set...
...{#<Set: {1}>,
# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'

board = Set.new...
...nd
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2,...
...//emlist[例1][ruby]{
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,...
...# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}

//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j...

Prime::TrialDivisionGenerator#next -> Integer (9101.0)

次の(擬似)素数を返します。なお、この実装においては擬似素数は真に素数です。

次の(擬似)素数を返します。なお、この実装においては擬似素数は真に素数です。

また内部的な列挙位置を進めます。

Prime#prime_division(value, generator= Prime::Generator23.new) -> [[Integer, Integer]] (6301.0)

与えられた整数を素因数分解します。

...を素因数分解します。

@param value 素因数分解する任意の整数を指定します。

@param generator 素数生成器のインスタンスを指定します。

@return 素因数とその指数から成るペアを要素とする配列です。つまり、戻り値の各要素は2...
...roDivisionError 与えられた数値がゼロである場合に発生します。

//emlist[例][ruby]{
require 'prime'
Prime.prime_division(12) #=> [[2,2], [3,1]]
Prime.prime_division(10) #=> [[2,1], [5,1]]
//}

@see Prime.prime_division, Prime::EratosthenesGenerator, Prime::TrialDivisionGenerator...
..., Prime::Generator23...

Numeric#divmod(other) -> [Numeric] (6213.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

...other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。

ここで、商 q と余り r は、

* self == other * q + r

* other > 0 のとき: 0 <= r < oth...
...er
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
div
mod が返す商は Numeric#div と同じです。
また余りは、Numeric#modulo と同じです。
このメソッドは、メソッド / と % によって定義されています。

@param other 自身を...
...割る数を指定します。

//emlist[例][ruby]{
11.divmod(3) #=> [3, 2]
(11.5).divmod(3.5) #=> [3, 1.0]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
//}

@see Numeric#div, Numeric#modulo...

Bignum#divmod(other) -> [Integer, Numeric] (6201.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

...self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし
て返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

@param other self を割る数。

@see Numeric#divmod...

絞り込み条件を変える

Bignum#fdiv(other) -> Float | Complex (6201.0)

self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。

...self を other で割った商を Float で返します。
ただし Complex が関わる場合は例外です。
その場合も成分は Float になります。

@param other self を割る数を指定します。

@see Numeric#quo...

Complex#fdiv(other) -> Complex (6201.0)

self を other で割った商を返します。 実部と虚部が共に Float の値になります。

...self を other で割った商を返します。
実部と虚部が共に Float の値になります。

@param other 自身を割る数

//emlist[例][ruby]{
Complex(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
Complex(11, 22).quo(3) # => ((11/3)+(22/3)*i)
//}

@see Complex#quo...
<< < 1 2 3 4 > >>