るりまサーチ

最速Rubyリファレンスマニュアル検索!
24件ヒット [1-24件を表示] (0.146秒)

別のキーワード

  1. numeric step
  2. _builtin numeric
  3. numeric imag
  4. numeric %
  5. numeric -@

ライブラリ

検索結果

Integer#[](nth) -> Integer (18180.0)

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

...なければ 0 を返します。

@
param nth 何ビット目を指すかの数値
@
param len 何ビット分を返すか
@
param range 返すビットの範囲
@
return self[nth] は 1 か 0
@
return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@
return self[i..j] は (n >> i)...
...(j - i + 1)) - 1) と同じ
@
return self[i...j] は (n >> i) & ((1 << (j - i)) - 1) と同じ
@
return self[i..] は (n >> i) と同じ
@
return self[..j] は n & ((1 << (j + 1)) - 1) が 0 なら 0
@
return self[...j] は n & ((1 << j) - 1) が 0 なら 0
@
raise ArgumentError self[..j...
...] で n & ((1 << (j + 1)) - 1) が 0 以外のとき
@
raise ArgumentError self[...j] で n & ((1 << j) - 1) が 0 以外のとき

//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010

a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100...

Integer#[](nth, len) -> Integer (18180.0)

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

...なければ 0 を返します。

@
param nth 何ビット目を指すかの数値
@
param len 何ビット分を返すか
@
param range 返すビットの範囲
@
return self[nth] は 1 か 0
@
return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@
return self[i..j] は (n >> i)...
...(j - i + 1)) - 1) と同じ
@
return self[i...j] は (n >> i) & ((1 << (j - i)) - 1) と同じ
@
return self[i..] は (n >> i) と同じ
@
return self[..j] は n & ((1 << (j + 1)) - 1) が 0 なら 0
@
return self[...j] は n & ((1 << j) - 1) が 0 なら 0
@
raise ArgumentError self[..j...
...] で n & ((1 << (j + 1)) - 1) が 0 以外のとき
@
raise ArgumentError self[...j] で n & ((1 << j) - 1) が 0 以外のとき

//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010

a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100...

Integer#[](range) -> Integer (18180.0)

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

...なければ 0 を返します。

@
param nth 何ビット目を指すかの数値
@
param len 何ビット分を返すか
@
param range 返すビットの範囲
@
return self[nth] は 1 か 0
@
return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@
return self[i..j] は (n >> i)...
...(j - i + 1)) - 1) と同じ
@
return self[i...j] は (n >> i) & ((1 << (j - i)) - 1) と同じ
@
return self[i..] は (n >> i) と同じ
@
return self[..j] は n & ((1 << (j + 1)) - 1) が 0 なら 0
@
return self[...j] は n & ((1 << j) - 1) が 0 なら 0
@
raise ArgumentError self[..j...
...] で n & ((1 << (j + 1)) - 1) が 0 以外のとき
@
raise ArgumentError self[...j] で n & ((1 << j) - 1) が 0 以外のとき

//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010

a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100...

Integer#[](nth) -> Integer (18120.0)

nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。

...(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。

@
param nth 何ビット目を指すかの数値
@
return 1 か 0

//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010

a = 9**15...
...00011110010100111100010111001
//}

n[i] は (n >> i) & 1 と等価なので、負のインデックスは常に 0 を返します。

//emlist[][ruby]{
p 255[-1] # => 0
//}


self[nth]=bit (つまりビットの修正) がないのは、Numeric 関連クラスが
immutable であるためです。...