829件ヒット
[101-200件を表示]
(0.027秒)
キーワード
- * (24)
- ** (12)
- + (12)
- +@ (12)
- - (12)
- -@ (12)
-
/ (24) - == (12)
- [] (12)
- []= (7)
- adjugate (12)
- antisymmetric? (7)
- coerce (12)
- cofactor (12)
-
cofactor
_ expansion (12) - collect (24)
- collect! (14)
- column (24)
- combine (8)
- component (12)
- det (12)
- determinant (12)
- diagonal? (12)
- each (24)
-
each
_ with _ index (24) - eigen (12)
- eigensystem (12)
- element (12)
- empty? (12)
-
entrywise
_ product (8) - eql? (12)
-
find
_ index (36) -
first
_ minor (12) -
hadamard
_ product (8) - hermitian? (12)
- hstack (12)
- index (36)
-
laplace
_ expansion (12) - lup (12)
-
lup
_ decomposition (12) - map (24)
- map! (14)
- minor (24)
- normal? (12)
- orthogonal? (12)
- permutation? (12)
- rect (12)
- rectangular (12)
- regular? (12)
- round (12)
- row (24)
- singular? (12)
-
skew
_ symmetric? (7) - symmetric? (12)
- tr (12)
- trace (12)
- unitary? (12)
- vstack (12)
検索結果
先頭5件
-
Matrix
# minor(from _ row . . to _ row , from _ col . . to _ col) -> Matrix (17148.0) -
selfの部分行列を返します。
...号..終了列番号
@param from_row 部分行列の開始行(0オリジンで指定)
@param row_size 部分行列の行サイズ
@param from_col 部分行列の開始列(0オリジンで指定)
@param col_size 部分行列の列サイズ
//emlist[例][ruby]{
require 'matrix'
a1 = [ 1, 2, 3, 4,......5]
a2 = [11, 12, 13, 14, 15]
a3 = [21, 22, 23, 24, 25]
a4 = [31, 32, 33, 34, 35]
a5 = [51, 52, 53, 54, 55]
m = Matrix[a1, a2, a3, a4, a5]
p m.minor(0, 2, 1, 2) # => Matrix[[2, 3], [12, 13]]
//}... -
Matrix
# eigen -> Matrix :: EigenvalueDecomposition (17142.0) -
行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
...行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
Matrix::EigenvalueDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(右固有ベクトル、固有値行列、左固有ベクトル)
を得ることがで......ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
@see Matrix::EigenvalueDec... -
Matrix
# eigensystem -> Matrix :: EigenvalueDecomposition (17142.0) -
行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
...行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
Matrix::EigenvalueDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(右固有ベクトル、固有値行列、左固有ベクトル)
を得ることがで......ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
@see Matrix::EigenvalueDec... -
Matrix
# adjugate -> Matrix (17141.0) -
余因子行列を返します。
...余因子行列を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[7,6],[3,9]].adjugate # => Matrix[[9, -6], [-3, 7]]
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方でない場合に発生します。
@see Matrix#cofactor... -
Matrix
# combine(*matrices) {|*elements| . . . } -> Matrix (17139.0) -
要素ごとにブロックを呼び出した結果を組み合わせた Matrix を返します。
...要素ごとにブロックを呼び出した結果を組み合わせた Matrix を返します。
Matrix.combine(self, *matrices) { ... } と同じです。
@see Matrix.combine... -
Matrix
# collect {|x| . . . } -> Matrix (17136.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...適用を繰り返した結果を、要素として持つ行列を生成します。
ブロックがない場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
//}
@see Matrix#each... -
Matrix
# entrywise _ product(m) -> Matrix (17136.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# hadamard _ product(m) -> Matrix (17136.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# lup -> Matrix :: LUPDecomposition (17136.0) -
行列の LUP 分解を保持したオブジェクトを返します。
...
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'......a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
//}
@see Matrix::LUPDecomposition... -
Matrix
# lup _ decomposition -> Matrix :: LUPDecomposition (17136.0) -
行列の LUP 分解を保持したオブジェクトを返します。
...
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'......a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
//}
@see Matrix::LUPDecomposition... -
Matrix
# map {|x| . . . } -> Matrix (17136.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...適用を繰り返した結果を、要素として持つ行列を生成します。
ブロックがない場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
//}
@see Matrix#each...