47件ヒット
[1-47件を表示]
(0.075秒)
検索結果
先頭4件
-
Integer
# div(other) -> Integer (18156.0) -
整商(整数の商)を返します。 普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。
...
div に対応する剰余メソッドは modulo です。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[例][ruby]{
7.div(2) # => 3
7.div(-2) # => -4
7.div(2.0) # => 3
7.div(Rational(2, 1)) # => 3
begin
2.div(0)
rescue => e
e # => #<ZeroDivisionError: div......ided by 0>
end
begin
2.div(0.0)
rescue => e
e # => #<ZeroDivisionError: divided by 0>
# Integer#/ と違い、引数が Float でもゼロで割ることはできない
end
//}
@see Integer#fdiv, Integer#/, Integer#modulo... -
Set
# divide {|o1 , o2| . . . } -> Set (6113.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
...ruby]{
require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set:......分類を作成します。][ruby]{
require 'set'
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,......。
//emlist[例1][ruby]{
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,......置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,... -
Set
# divide {|o| . . . } -> Set (6113.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
...ruby]{
require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set:......分類を作成します。][ruby]{
require 'set'
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,......。
//emlist[例1][ruby]{
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,......置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,... -
Integer
# / (other) -> Numeric (13.0) -
除算の算術演算子。
...側の引数(対象)
@return 計算結果
//emlist[例][ruby]{
7 / 2 # => 3
7 / -2 # => -4
7 / 2.0 # => 3.5
7 / Rational(2, 1) # => (7/2)
7 / Complex(2, 0) # => ((7/2)+0i)
begin
2 / 0
rescue => e
e # => #<ZeroDivisionError: divided by 0>
end
//}
@see Integer#div, Integer#fdiv, Numeric#quo...