クラス
- Matrix (71)
-
Matrix
:: EigenvalueDecomposition (10) -
Matrix
:: LUPDecomposition (10) - Vector (49)
キーワード
- * (4)
- + (2)
- +@ (1)
- - (2)
- -@ (1)
-
/ (3) - == (1)
- [] (1)
- []= (3)
-
angle
_ with (1) - antisymmetric? (1)
- coerce (1)
- cofactor (1)
-
cofactor
_ expansion (1) - collect (4)
- collect! (4)
- collect2 (2)
- column (2)
-
column
_ count (1) -
column
_ size (1) -
column
_ vectors (1) - combine (1)
- component (2)
- conj (1)
- conjugate (1)
- covector (1)
- cross (1)
-
cross
_ product (1) - d (1)
- det (2)
- determinant (2)
- dot (1)
- each (4)
- each2 (2)
-
each
_ with _ index (2) - eigen (1)
- eigensystem (1)
-
eigenvalue
_ matrix (1) - eigenvalues (1)
-
eigenvector
_ matrix (1) -
eigenvector
_ matrix _ inv (1) - eigenvectors (1)
- element (1)
-
elements
_ to _ f (2) -
elements
_ to _ i (2) -
elements
_ to _ r (2) -
entrywise
_ product (1) - eql? (1)
-
find
_ index (3) -
first
_ minor (1) -
hadamard
_ product (1) - hash (1)
- hstack (1)
- independent? (1)
- index (3)
-
inner
_ product (1) - inspect (2)
- l (1)
-
laplace
_ expansion (1) - lup (1)
-
lup
_ decomposition (1) - magnitude (1)
- map (4)
- map! (4)
- map2 (1)
- minor (2)
- norm (1)
- normalize (1)
- p (1)
- pivots (1)
- r (1)
- rank (1)
- rect (1)
- rectangular (1)
- row (2)
-
row
_ count (1) -
row
_ size (1) -
row
_ vectors (1) - singular? (1)
- size (1)
-
skew
_ symmetric? (1) - solve (1)
- symmetric? (1)
- t (1)
-
to
_ a (4) -
to
_ ary (2) -
to
_ s (1) - tr (1)
- trace (1)
- transpose (1)
- u (1)
- v (1)
-
v
_ inv (1) - vstack (1)
- zero? (1)
検索結果
先頭5件
-
Matrix
# column _ count -> Integer (36610.0) -
行列の列数を返します。
行列の列数を返します。 -
Vector
# covector -> Matrix (27358.0) -
Matrix オブジェクトへ変換します。
...Matrix オブジェクトへ変換します。
列ベクトル (行列)、すなわち、(n, 1) 型の行列に変換します。
実際には Matrix.row_vector(self) を適用します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[2, 3, 5]
p v # => Vector[2, 3, 5]
m = v.covector
p m # => M... -
Vector
# collect -> Enumerator (27328.0) -
ベクトルの各要素に対してブロックを評価した結果を、要素として持つベクトルを生成します。
...して持つベクトルを生成します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
a = [1, 2, 3.5, -10]
v1 = Vector.elements(a)
p v1 # => Vector[1, 2, 3.5, -10]
v2 = v1.map{|x|
x * -1
}
p v2 # => Vector[-1, -2, -3.5, 10]
//}... -
Vector
# collect {|x| . . . } -> Vector (27328.0) -
ベクトルの各要素に対してブロックを評価した結果を、要素として持つベクトルを生成します。
...して持つベクトルを生成します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
a = [1, 2, 3.5, -10]
v1 = Vector.elements(a)
p v1 # => Vector[1, 2, 3.5, -10]
v2 = v1.map{|x|
x * -1
}
p v2 # => Vector[-1, -2, -3.5, 10]
//}... -
Vector
# collect! -> Enumerator (27328.0) -
ベクトルの各要素を順番にブロックに渡して評価し、その結果で要素を置き換えます。
...素を置き換えます。
ブロックのない場合は、自身と map! から生成した Enumerator オブジェクトを返します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[1, 2, 3]
p v.map!{ |el| el * 2 } #=> Vector[2, 4, 6]
p v #=> Vector[2, 4, 6]
//}... -
Vector
# collect! {|element| . . . } -> self (27328.0) -
ベクトルの各要素を順番にブロックに渡して評価し、その結果で要素を置き換えます。
...素を置き換えます。
ブロックのない場合は、自身と map! から生成した Enumerator オブジェクトを返します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[1, 2, 3]
p v.map!{ |el| el * 2 } #=> Vector[2, 4, 6]
p v #=> Vector[2, 4, 6]
//}... -
Vector
# collect2(v) -> Enumerator (27328.0) -
ベクトルの各要素と引数 v の要素との組に対してブロックを評価し、その結果を要素として持つ配列を返します。
...クを省略した場合は Enumerator を返します。
@param v ブロック内で評価される(ベクトル or 配列)
@raise ExceptionForMatrix::ErrDimensionMismatch 自分自身と引数のベクト
ルの要素の数(次元)が異なっていたときに発生します。
@see Vec... -
Vector
# collect2(v) {|x , y| . . . } -> Array (27328.0) -
ベクトルの各要素と引数 v の要素との組に対してブロックを評価し、その結果を要素として持つ配列を返します。
...クを省略した場合は Enumerator を返します。
@param v ブロック内で評価される(ベクトル or 配列)
@raise ExceptionForMatrix::ErrDimensionMismatch 自分自身と引数のベクト
ルの要素の数(次元)が異なっていたときに発生します。
@see Vec... -
Matrix
# column _ size -> Integer (27310.0) -
行列の列数を返します。
行列の列数を返します。 -
Vector
# inspect -> String (27310.0) -
オブジェクトの内容を文字列化します。
オブジェクトの内容を文字列化します。 -
Matrix
# each(which = :all) -> Enumerator (18664.0) -
行列の各要素を引数としてブロックを呼び出します。
...uby]{
require 'matrix'
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
//}
@param which どの要素に対してブロックを呼び出すのかを Symbol で指定します
@see Matrix#each_with_index, Matrix#map... -
Matrix
# each(which = :all) {|e| . . . } -> self (18664.0) -
行列の各要素を引数としてブロックを呼び出します。
...uby]{
require 'matrix'
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
//}
@param which どの要素に対してブロックを呼び出すのかを Symbol で指定します
@see Matrix#each_with_index, Matrix#map... -
Matrix
# each _ with _ index(which = :all) -> Enumerator (18646.0) -
行列の各要素をその位置とともに引数としてブロックを呼び出します。
...る要素の範囲を指定することができます。
Matrix#each と同じなのでそちらを参照してください。
ブロックを省略した場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
puts "#......{e} at #{row}, #{col}"
end
# => 1 at 0, 0
# => 2 at 0, 1
# => 3 at 1, 0
# => 4 at 1, 1
//}
@param which どの要素に対してブロックを呼び出すのかを Symbol で指定します
@see Matrix#each... -
Matrix
# each _ with _ index(which = :all) {|e , row , col| . . . } -> self (18646.0) -
行列の各要素をその位置とともに引数としてブロックを呼び出します。
...る要素の範囲を指定することができます。
Matrix#each と同じなのでそちらを参照してください。
ブロックを省略した場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
puts "#......{e} at #{row}, #{col}"
end
# => 1 at 0, 0
# => 2 at 0, 1
# => 3 at 1, 0
# => 4 at 1, 1
//}
@param which どの要素に対してブロックを呼び出すのかを Symbol で指定します
@see Matrix#each... -
Matrix
# cofactor(row , column) -> Integer | Rational | Float (18610.0) -
(row, column)-余因子を返します。
...(row, column)-余因子を返します。
各要素の型によって返り値が変わります。
@param row 行
@param column 列
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方でない場合に発生します。
@see Matrix#adjugate... -
Matrix
# cofactor _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (18610.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...けです。かわりにMatrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expa......=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrD......imensionMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor... -
Matrix
# row _ vectors -> [Vector] (18610.0) -
自分自身を行ベクトルの配列として返します。
...自分自身を行ベクトルの配列として返します。
//emlist[例][ruby]{
require 'matrix'
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.row_vectors # => [Vector[1, 2, 3], Vector[10, 15, 20], Vector[-1, -2, 1.5]]
//}... -
Matrix
:: EigenvalueDecomposition # eigenvectors -> [Vector] (18610.0) -
右固有ベクトルを配列で返します。
右固有ベクトルを配列で返します。 -
Matrix
# collect!(which = :all) -> Enumerator (18364.0) -
行列の各要素に対してブロックの適用を繰り返した結果で要素を置き換えます。
...詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map! { |element| element * 10 } #=> Matrix[[10, 20], [30, 40]]
p m #=> Matrix[[10, 20], [30, 40]]
//}
@see Matrix#each, Matrix#map... -
Matrix
# collect!(which = :all) {|element| . . . } -> self (18364.0) -
行列の各要素に対してブロックの適用を繰り返した結果で要素を置き換えます。
...詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map! { |element| element * 10 } #=> Matrix[[10, 20], [30, 40]]
p m #=> Matrix[[10, 20], [30, 40]]
//}
@see Matrix#each, Matrix#map... -
Matrix
# collect(which = :all) -> Enumerator (18364.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...Symbol の詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
p m.map(:diagonal) { |x| x * 10 } # => Matrix[[10, 2], [3, 40]]
//}
@see Matrix#each, Matrix#map!... -
Matrix
# collect(which = :all) {|x| . . . } -> Matrix (18364.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...Symbol の詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
p m.map(:diagonal) { |x| x * 10 } # => Matrix[[10, 2], [3, 40]]
//}
@see Matrix#each, Matrix#map!... -
Matrix
# column(j) -> Vector | nil (18358.0) -
j 番目の列を Vector オブジェクトで返します。 j 番目の列が存在しない場合は nil を返します。 ブロックが与えられた場合はその列の各要素についてブロックを繰り返します。
...ンデックスと見倣します。末尾の列が -1 番目になります。
//emlist[例][ruby]{
require 'matrix'
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.column(1) # => Vector[2, 15, -2]
cnt = 0
m.column(-1) { |x|
cnt = cnt + x
}
p cnt # => 24.5... -
Matrix
# column(j) {|x| . . . } -> self (18358.0) -
j 番目の列を Vector オブジェクトで返します。 j 番目の列が存在しない場合は nil を返します。 ブロックが与えられた場合はその列の各要素についてブロックを繰り返します。
...ンデックスと見倣します。末尾の列が -1 番目になります。
//emlist[例][ruby]{
require 'matrix'
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.column(1) # => Vector[2, 15, -2]
cnt = 0
m.column(-1) { |x|
cnt = cnt + x
}
p cnt # => 24.5... -
Vector
# each -> Enumerator (18346.0) -
ベクトルの各要素をブロックの引数として順にブロックを呼び出します。
ベクトルの各要素をブロックの引数として順にブロックを呼び出します。
このクラスは Enumerable を include しているため、
このメソッドを経由して Enumerable の各メソッドを使うことができます。
ブロックを省略した場合は Enumerator を返します。 -
Vector
# each {|e| . . . } -> self (18346.0) -
ベクトルの各要素をブロックの引数として順にブロックを呼び出します。
ベクトルの各要素をブロックの引数として順にブロックを呼び出します。
このクラスは Enumerable を include しているため、
このメソッドを経由して Enumerable の各メソッドを使うことができます。
ブロックを省略した場合は Enumerator を返します。 -
Vector
# each2(v) -> Enumerator (18346.0) -
ベクトルの各要素と、それに対応するインデックスを持つ引数 v の要素との組に対して (2引数の) ブロックを繰返し評価します。
...ロックを省略した場合は Enumerator を返します。
@param v 各要素と組を取るためのオブジェクト
@raise ExceptionForMatrix::ErrDimensionMismatch 自分自身と引数のベクト
ルの要素の数(次元)が異なっていたときに発生します。
@see Array... -
Vector
# each2(v) {|x , y| . . . } -> self (18346.0) -
ベクトルの各要素と、それに対応するインデックスを持つ引数 v の要素との組に対して (2引数の) ブロックを繰返し評価します。
...ロックを省略した場合は Enumerator を返します。
@param v 各要素と組を取るためのオブジェクト
@raise ExceptionForMatrix::ErrDimensionMismatch 自分自身と引数のベクト
ルの要素の数(次元)が異なっていたときに発生します。
@see Array... -
Matrix
# coerce(other) -> Array (18328.0) -
他の数値オブジェクトとの変換を行います。
...クトをMatrix::Scalarのオブジェクトに変換し、selfとの組を配列として返します。
@param other 変換する数値オブジェクト
//emlist[例][ruby]{
require 'matrix'
a1 = [1, 2]
a2 = [-1.25, 2.2]
m = Matrix[a1, a2]
r = Rational(1, 2)
p m.coerce(r) #=> [#<Matrix::Scalar:......0x832df18 @value=(1/2)>, Matrix[[1, 2], [-1.25, 2.2]]]
//}... -
Vector
# map {|x| . . . } -> Vector (18328.0) -
ベクトルの各要素に対してブロックを評価した結果を、要素として持つベクトルを生成します。
...して持つベクトルを生成します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
a = [1, 2, 3.5, -10]
v1 = Vector.elements(a)
p v1 # => Vector[1, 2, 3.5, -10]
v2 = v1.map{|x|
x * -1
}
p v2 # => Vector[-1, -2, -3.5, 10]
//}... -
Matrix
# antisymmetric? -> bool (18310.0) -
行列が反対称行列 (交代行列、歪〔わい〕対称行列とも) ならば true を返します。
...@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
//emlist[][ruby]{
require 'matrix'
Matrix[[0, -2, Complex(1, 3)], [2, 0, 5], [-Complex(1, 3), -5, 0]].antisymmetric? # => true
Matrix.empty.antisymmetric? # => true
Matrix[[1, 2, 3], [4, 5, 6]......, [7, 8, 9]].antisymmetric? # => false
# 対角要素が違う
Matrix[[1, -2, 3], [2, 0, 6], [-3, -6, 0]].antisymmetric? # => false
# 符号が違う
Matrix[[0, 2, -3], [2, 0, 6], [-3, 6, 0]].antisymmetric? # => false
//}... -
Matrix
# column _ vectors -> [Vector] (18310.0) -
自分自身を列ベクトルの配列として返します。
...自分自身を列ベクトルの配列として返します。
//emlist[例][ruby]{
require 'matrix'
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.column_vectors # => [Vector[1, 10, -1], Vector[2, 15, -2], Vector[3, 20, 1.5]]
//}... -
Matrix
# combine(*matrices) {|*elements| . . . } -> Matrix (18310.0) -
要素ごとにブロックを呼び出した結果を組み合わせた Matrix を返します。
...要素ごとにブロックを呼び出した結果を組み合わせた Matrix を返します。
Matrix.combine(self, *matrices) { ... } と同じです。
@see Matrix.combine... -
Matrix
# conj -> Matrix (18310.0) -
複素共役を取った行列を返します。
...複素共役を取った行列を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
# => 1+2i i 0
# 1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
# => 1-2i -i 0
# 1 2 3
//}... -
Matrix
# conjugate -> Matrix (18310.0) -
複素共役を取った行列を返します。
...複素共役を取った行列を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
# => 1+2i i 0
# 1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
# => 1-2i -i 0
# 1 2 3
//}... -
Matrix
# entrywise _ product(m) -> Matrix (18310.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# hadamard _ product(m) -> Matrix (18310.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# hstack(*matrices) -> Matrix (18310.0) -
行列 self と matrices を横に並べた行列を生成します。
...self と matrices を横に並べた行列を生成します。
Matrix.hstack(self, *matrices) と同じです。
//emlist[例][ruby]{
require 'matrix'
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
//}
@param matrices 並べる行列。......すべての行列の行数がselfの行数と一致していなければならない
@raise ExceptionForMatrix::ErrDimensionMismatch 行数の異なる行列がある場合に発生します
@see Matrix.hstack, Matrix#vstack... -
Matrix
# inspect -> String (18310.0) -
自分自身を見やすい形式に文字列化し、その文字列を返します。
...自分自身を見やすい形式に文字列化し、その文字列を返します。
//emlist[例][ruby]{
require 'matrix'
a1 = [1, 2]
a2 = [3, 4.5]
m = Matrix[a1, a2]
p m.inspect # => "Matrix[[1, 2], [3, 4.5]]"
//}... -
Matrix
# laplace _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (18310.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...けです。かわりにMatrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expa......=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrD......imensionMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor... -
Matrix
# rect -> [Matrix , Matrix] (18310.0) -
行列を実部と虚部に分解したものを返します。
...行列を実部と虚部に分解したものを返します。
//emlist[例][ruby]{
m.rect == [m.real, m.imag] # ==> true for all matrices m
//}
@see Matrix#imaginary, Matrix#real... -
Matrix
# rectangular -> [Matrix , Matrix] (18310.0) -
行列を実部と虚部に分解したものを返します。
...行列を実部と虚部に分解したものを返します。
//emlist[例][ruby]{
m.rect == [m.real, m.imag] # ==> true for all matrices m
//}
@see Matrix#imaginary, Matrix#real... -
Matrix
# row _ count -> Integer (18310.0) -
行列の行数を返します。
行列の行数を返します。 -
Matrix
# skew _ symmetric? -> bool (18310.0) -
行列が反対称行列 (交代行列、歪〔わい〕対称行列とも) ならば true を返します。
...@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
//emlist[][ruby]{
require 'matrix'
Matrix[[0, -2, Complex(1, 3)], [2, 0, 5], [-Complex(1, 3), -5, 0]].antisymmetric? # => true
Matrix.empty.antisymmetric? # => true
Matrix[[1, 2, 3], [4, 5, 6]......, [7, 8, 9]].antisymmetric? # => false
# 対角要素が違う
Matrix[[1, -2, 3], [2, 0, 6], [-3, -6, 0]].antisymmetric? # => false
# 符号が違う
Matrix[[0, 2, -3], [2, 0, 6], [-3, 6, 0]].antisymmetric? # => false
//}... -
Matrix
# symmetric? -> bool (18310.0) -
行列が対称ならば true を返します。
...行列が対称ならば true を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します... -
Matrix
# vstack -> Matrix (18310.0) -
行列 self と matrices を縦に並べた行列を生成します。
...と matrices を縦に並べた行列を生成します。
Matrix.vstack(self, *matrices) と同じです。
//emlist[例][ruby]{
require 'matrix'
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
//}
@see Matrix.vstack, Matrix#hstack... -
Matrix
:: EigenvalueDecomposition # eigenvector _ matrix -> Matrix (18310.0) -
右固有ベクトルを横に並べた行列を返します。
右固有ベクトルを横に並べた行列を返します。 -
Matrix
:: EigenvalueDecomposition # eigenvector _ matrix _ inv -> Matrix (18310.0) -
左固有ベクトルを縦に並べた行列を返します。
...左固有ベクトルを縦に並べた行列を返します。
これは Matrix::EigenvalueDecomposition#v の逆行列です... -
Vector
# component(i) -> object | nil (18310.0) -
i 番目の要素を返します。インデックスは 0 から開始します。 要素が存在しないインデックスを指定した時には nil を返します。
i 番目の要素を返します。インデックスは 0 から開始します。
要素が存在しないインデックスを指定した時には nil を返します。
@param i 取得する要素のインデックスを整数値で指定します。
インデックスは 0 から始めます。 -
Vector
# cross(*vs) -> Vector (18310.0) -
self とベクトル vs とのクロス積を返します。
...vs は n-2 個の
n次元ベクトルでなければなりません。
@param vs クロス積を取るベクトルの集合
@raise ExceptionForMatrix::ErrOperationNotDefined self の
次元が1以下であるときに発生します。
@raise ArgumentError vs のベクトルの個数が n-... -
Vector
# cross _ product(*vs) -> Vector (18310.0) -
self とベクトル vs とのクロス積を返します。
...vs は n-2 個の
n次元ベクトルでなければなりません。
@param vs クロス積を取るベクトルの集合
@raise ExceptionForMatrix::ErrOperationNotDefined self の
次元が1以下であるときに発生します。
@raise ArgumentError vs のベクトルの個数が n-... -
Vector
# inner _ product(v) -> Float (18310.0) -
ベクトル v との内積を返します。
...ベクトル v との内積を返します。
@param v 内積を求めるベクトル
@raise ExceptionForMatrix::ErrDimensionMismatch 自分自身と引数のベクト
ルの要素の数(次元)が異なっていたときに発生します。... -
Vector
# map -> Enumerator (18028.0) -
ベクトルの各要素に対してブロックを評価した結果を、要素として持つベクトルを生成します。
...して持つベクトルを生成します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
a = [1, 2, 3.5, -10]
v1 = Vector.elements(a)
p v1 # => Vector[1, 2, 3.5, -10]
v2 = v1.map{|x|
x * -1
}
p v2 # => Vector[-1, -2, -3.5, 10]
//}... -
Vector
# map! -> Enumerator (18028.0) -
ベクトルの各要素を順番にブロックに渡して評価し、その結果で要素を置き換えます。
...素を置き換えます。
ブロックのない場合は、自身と map! から生成した Enumerator オブジェクトを返します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[1, 2, 3]
p v.map!{ |el| el * 2 } #=> Vector[2, 4, 6]
p v #=> Vector[2, 4, 6]
//}... -
Vector
# map! {|element| . . . } -> self (18028.0) -
ベクトルの各要素を順番にブロックに渡して評価し、その結果で要素を置き換えます。
...素を置き換えます。
ブロックのない場合は、自身と map! から生成した Enumerator オブジェクトを返します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[1, 2, 3]
p v.map!{ |el| el * 2 } #=> Vector[2, 4, 6]
p v #=> Vector[2, 4, 6]
//}... -
Matrix
# lup _ decomposition -> Matrix :: LUPDecomposition (9646.0) -
行列の LUP 分解を保持したオブジェクトを返します。
...
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'......a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
//}
@see Matrix::LUPDecomposition... -
Matrix
:: LUPDecomposition # solve(b) -> Vector | Matrix (9406.0) -
self が正方行列 A の LUP 分解の時、一次方程式 Ax = b の解を返します。 b には Vector, Matrix, 数値の配列を指定出来ます。
...self が正方行列 A の LUP 分解の時、一次方程式 Ax = b の解を返します。
b には Vector, Matrix, 数値の配列を指定出来ます。
それぞれベクトルのサイズ、行列の行数、配列のサイズが A の列数と一致していなければなりません。......指定します。
//emlist[][ruby]{
require 'matrix'
lup = Matrix[[2, 1], [1, 2]].lup
lup.solve([1, -1]) #=> Vector[(1/1), (-1/1)]
lup.solve(Vector[3, 0]) #=> Vector[(2/1), (-1/1)]
lup.solve(Matrix[[1, 3], [-1, 0]]) #=> Matrix[[(1/1), (2/1)], [(-1/1), (-1/1)]]
//}... -
Matrix
# map!(which = :all) -> Enumerator (9364.0) -
行列の各要素に対してブロックの適用を繰り返した結果で要素を置き換えます。
...詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map! { |element| element * 10 } #=> Matrix[[10, 20], [30, 40]]
p m #=> Matrix[[10, 20], [30, 40]]
//}
@see Matrix#each, Matrix#map... -
Matrix
# map!(which = :all) {|element| . . . } -> self (9364.0) -
行列の各要素に対してブロックの適用を繰り返した結果で要素を置き換えます。
...詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map! { |element| element * 10 } #=> Matrix[[10, 20], [30, 40]]
p m #=> Matrix[[10, 20], [30, 40]]
//}
@see Matrix#each, Matrix#map... -
Matrix
# map(which = :all) -> Enumerator (9364.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...Symbol の詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
p m.map(:diagonal) { |x| x * 10 } # => Matrix[[10, 2], [3, 40]]
//}
@see Matrix#each, Matrix#map!... -
Matrix
# map(which = :all) {|x| . . . } -> Matrix (9364.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...Symbol の詳細は、 Matrix#each の項目を参照して下さい。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
p m.map(:diagonal) { |x| x * 10 } # => Matrix[[10, 2], [3, 40]]
//}
@see Matrix#each, Matrix#map!... -
Vector
# elements _ to _ f -> Vector (9358.0) -
ベクトルの各成分をFloatに変換したベクトルを返します。
...ベクトルの各成分をFloatに変換したベクトルを返します。
このメソッドは deprecated です。 map(&:to_f) を使ってください。
//emlist[例][ruby]{
require 'matrix'
v = Vector.elements([2, 3, 5, 7, 9])
p v.elements_to_f
# => Vector[2.0, 3.0, 5.0, 7.0, 9.0]
//}... -
Vector
# elements _ to _ i -> Vector (9358.0) -
ベクトルの各成分をIntegerに変換したベクトルを返します。
...ベクトルの各成分をIntegerに変換したベクトルを返します。
このメソッドは deprecated です。 map(&:to_i) を使ってください。
//emlist[例][ruby]{
require 'matrix'
v = Vector.elements([2.5, 3.0, 5.01, 7])
p v.elements_to_i
# => Vector[2, 3, 5, 7]
//}... -
Vector
# elements _ to _ r -> Vector (9358.0) -
ベクトルの各成分をRationalに変換したベクトルを返します。
...の各成分をRationalに変換したベクトルを返します。
このメソッドは deprecated です。 map(&:to_r) を使ってください。
//emlist[例][ruby]{
require 'matrix'
v = Vector.elements([2.5, 3.0, 5.75, 7])
p v.elements_to_r
# => Vector[(5/2), (3/1), (23/4), (7/1)]
//}... -
Vector
# +(v) -> Vector | Matrix (9346.0) -
self にベクトル v を加えたベクトルを返します。
...には column_size が 1 の Matrix オブジェクトも指定できます。
その場合は返り値も Matrix オブジェクトになります。
@param v 加算するベクトル。加算可能な行列やベクトルを指定します。
@raise ExceptionForMatrix::ErrDimensionMismatch 自... -
Vector
# -(v) -> Vector | Matrix (9346.0) -
self からベクトル v を減じたベクトルを返します。
...には column_size が 1 の Matrix オブジェクトも指定できます。
その場合は返り値も Matrix オブジェクトになります。
@param v 減算するベクトル。減算可能な行列やベクトルを指定します。
@raise ExceptionForMatrix::ErrDimensionMismatch 自... -
Vector
# *(other) -> Vector (9331.0) -
self の各要素に数 other を乗じたベクトルを返します。
...ルを返します。
@param other self の各要素に掛ける Numeric オブジェクトを指定します。
//emlist[例][ruby]{
require 'matrix'
a = [1, 2, 3.5, 100]
v1 = Vector.elements(a)
p v1.*(2) # => Vector[2, 4, 7.0, 200]
p v1.*(-1.5) # => Vector[-1.5, -3.0, -5.25, -150.0]
//}... -
Vector
# / (other) -> Vector (9328.0) -
self の各要素を数 other で割ったベクトルを返します。
...self の各要素を数 other で割ったベクトルを返します。
@param other self の各要素を割る Numeric オブジェクトを指定します。
@raise ExceptionForMatrix::ErrOperationNotDefined other が Vector や Matrix
の場合に発生します... -
Vector
# map2(v) {|x , y| . . . } -> Vector (9328.0) -
ベクトルの各要素と引数 v の要素との組に対してブロックを評価し、その結果を要素として持つベクトルを返します。
...クを省略した場合は Enumerator を返します。
@param v ブロック内で評価される(ベクトル or 配列)
@raise ExceptionForMatrix::ErrDimensionMismatch 自分自身と引数のベクト
ルの要素の数(次元)が異なっていたときに発生します。
@see Vec......t2
次の例は、2つのベクトルの要素毎の積を要素として持つベクトルを生成します。
//emlist[例][ruby]{
require 'matrix'
v1 = Vector[2, 3, 5]
v2 = Vector[7, 9, 11]
a = Array[7, 9, 11]
z = v1.map2(v2) { |x, y| x * y }
p z # => Vector[14, 27, 55]
z = v1.map2(a) { |... -
Matrix
# component(i , j) -> () (9310.0) -
(i,j)要素を返します。 行列の範囲外の値を指定した場合には nil を返します。
...分を0オリジンで指定します。
@param j 要素の列成分を0オリジンで指定します。
//emlist[例][ruby]{
require 'matrix'
a1 = [1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, 2, 1.5]
m = Matrix[a1, a2, a3]
p m[0, 0] # => 1
p m[1, 1] # => 15
p m[1, 2] # => 20
p m[1, 3] # => nil
//}... -
Matrix
# trace -> Integer | Float | Rational | Complex (9310.0) -
トレース (trace) を返します。
...列のトレース (trace) とは、対角要素の和です。
//emlist[例][ruby]{
require 'matrix'
Matrix[[7,6], [3,9]].trace # => 16
//}
trace は正方行列でのみ定義されます。
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します... -
Matrix
:: LUPDecomposition # det -> Numeric (9310.0) -
元の行列の行列式の値を返します。 LUP 分解の結果を利用して計算します。
...元の行列の行列式の値を返します。
LUP 分解の結果を利用して計算します。
@see Matrix#determinant... -
Matrix
:: LUPDecomposition # determinant -> Numeric (9310.0) -
元の行列の行列式の値を返します。 LUP 分解の結果を利用して計算します。
...元の行列の行列式の値を返します。
LUP 分解の結果を利用して計算します。
@see Matrix#determinant... -
Vector
# [](i) -> object | nil (9310.0) -
i 番目の要素を返します。インデックスは 0 から開始します。 要素が存在しないインデックスを指定した時には nil を返します。
i 番目の要素を返します。インデックスは 0 から開始します。
要素が存在しないインデックスを指定した時には nil を返します。
@param i 取得する要素のインデックスを整数値で指定します。
インデックスは 0 から始めます。 -
Vector
# element(i) -> object | nil (9310.0) -
i 番目の要素を返します。インデックスは 0 から開始します。 要素が存在しないインデックスを指定した時には nil を返します。
i 番目の要素を返します。インデックスは 0 から開始します。
要素が存在しないインデックスを指定した時には nil を返します。
@param i 取得する要素のインデックスを整数値で指定します。
インデックスは 0 から始めます。 -
Vector
# independent?(*vectors) -> bool (9310.0) -
self とベクトルの列 vectors が線形独立であれば true を返します。
...self とベクトルの列 vectors が線形独立であれば true を返します。
require 'matrix'
Vector.independent?(self, *vectors)
と同じです。
@param vectors 線形独立性を判定するベクトル列... -
Vector
# normalize -> Vector (9310.0) -
自身を Vector#norm で正規化したベクトルを返します。
...たベクトルを返します。
@raise Vector::ZeroVectorError ベクトルが0である場合に発生します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[2, 6, 9].normalize
# => Vector[0.18181818181818182, 0.5454545454545454, 0.8181818181818182]
v.norm # => 1.0
//}
@see Vector#norm... -
Vector
# []=(range , v) (9148.0) -
Range オブジェクト range の範囲にある要素を v の内容に置換します。
...を Range オブジェクトで指定します。
@param v range の範囲に設定したい要素を指定します。
Vector や 1行の Matrix での指定もできます。
@raise TypeError ベクトルの範囲外にある range を指定したときに、発生します。
@raise Argu......@raise Matrix::ErrDimensionMismatch v に Matrix を指定し、次元が合わないときに発生します。
//emlist[][ruby]{
require 'matrix'
v = Vector[0, 0, 0, 0, 0]
v[1..2] = 5
p v #=> Vector[0, 5, 5, 0, 0]
v[1..3] = Vector[2, 4, 8]
p v #=> Vector[0, 2, 4, 8, 0]
v[1..-2] = Matrix[[3, 6... -
Vector
# to _ a -> Array (9106.0) -
ベクトル(Vector)から配列 (Array) に変換します。
...ベクトル(Vector)から配列 (Array) に変換します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[2, 3, 5, 7, 9]
p v.to_a
# => [2, 3, 5, 7, 9]
//}... -
Vector
# to _ s -> String (9106.0) -
ベクトル(Vector)から文字列 (String) に変換します。
...ベクトル(Vector)から文字列 (String) に変換します。
//emlist[例][ruby]{
require 'matrix'
v = Vector[2, 3, 5, 7, 9]
p v.to_s
# => "Vector[2, 3, 5, 7, 9]"
//}... -
Vector
# *(m) -> Matrix (9061.0) -
自分自身を列ベクトル(行列)に変換して (実際には Matrix.column_vector(self) を適用) から、行列 m を右から乗じた行列 (Matrix クラス) を返します。
...を列ベクトル(行列)に変換して (実際には Matrix.column_vector(self) を適用) から、行列 m を右から乗じた行列 (Matrix クラス) を返します。
@param m 右から乗算を行う行列
@raise ExceptionForMatrix::ErrDimensionMismatch 次元が合わない場合に発......生します
=== 注意
引数の行列 m は自分自身を列ベクトルとした場合に乗算が定義できる行列である必要があります。
//emlist[例][ruby]{
require 'matrix'
v = Vector[1, 2]
a = [4, 5, 6]
m = Matrix[a]
p v * m # => Matrix[[4, 5, 6], [8, 10, 12]]
//}... -
Vector
# []=(index , value) (9028.0) -
index 番目の要素を value に変更します。
...定します。
@raise TypeError ベクトルの範囲外にある整数を指定したときに、発生します。
//emlist[][ruby]{
require 'matrix'
v = Vector[0, 0, 0, 0, 0]
v[1] = 2
p v #=> Vector[0, 2, 0, 0, 0]
v[-1] = 3
p v #=> Vector[0, 2, 0, 0, 3]
v[99] = 100
# IndexError: given index... -
Matrix
# row _ size -> Integer (9010.0) -
行列の行数を返します。
行列の行数を返します。 -
Matrix
:: EigenvalueDecomposition # d -> Matrix (9010.0) -
固有値を対角成分に並べた行列を返します。
固有値を対角成分に並べた行列を返します。 -
Matrix
:: EigenvalueDecomposition # eigenvalue _ matrix -> Matrix (9010.0) -
固有値を対角成分に並べた行列を返します。
固有値を対角成分に並べた行列を返します。 -
Matrix
:: EigenvalueDecomposition # eigenvalues -> [Float] (9010.0) -
固有値を配列で返します。
固有値を配列で返します。 -
Matrix
:: EigenvalueDecomposition # to _ a -> [Matrix , Matrix , Matrix] (9010.0) -
Matrix::EigenvalueDecomposition#v, Matrix::EigenvalueDecomposition#d, Matrix::EigenvalueDecomposition#v_inv をこの順に並べた配列を返します。
...
Matrix::EigenvalueDecomposition#v,
Matrix::EigenvalueDecomposition#d,
Matrix::EigenvalueDecomposition#v_inv
をこの順に並べた配列を返します。... -
Matrix
:: EigenvalueDecomposition # to _ ary -> [Matrix , Matrix , Matrix] (9010.0) -
Matrix::EigenvalueDecomposition#v, Matrix::EigenvalueDecomposition#d, Matrix::EigenvalueDecomposition#v_inv をこの順に並べた配列を返します。
...
Matrix::EigenvalueDecomposition#v,
Matrix::EigenvalueDecomposition#d,
Matrix::EigenvalueDecomposition#v_inv
をこの順に並べた配列を返します。... -
Matrix
:: EigenvalueDecomposition # v -> Matrix (9010.0) -
右固有ベクトルを横に並べた行列を返します。
右固有ベクトルを横に並べた行列を返します。 -
Matrix
:: EigenvalueDecomposition # v _ inv -> Matrix (9010.0) -
左固有ベクトルを縦に並べた行列を返します。
...左固有ベクトルを縦に並べた行列を返します。
これは Matrix::EigenvalueDecomposition#v の逆行列です... -
Matrix
:: LUPDecomposition # l -> Matrix (9010.0) -
LUP分解の下半行列部分を返します。
LUP分解の下半行列部分を返します。 -
Matrix
:: LUPDecomposition # p -> Matrix (9010.0) -
LUP分解の置換行列部分を返します。
LUP分解の置換行列部分を返します。 -
Matrix
:: LUPDecomposition # pivots -> [Integer] (9010.0) -
ピボッティングを表す配列を返します。
ピボッティングを表す配列を返します。 -
Matrix
:: LUPDecomposition # singular? -> bool (9010.0) -
元の行列が正方で特異なら true を、正則なら false を返します。 LUP 分解の結果を利用して判定します。
...元の行列が正方で特異なら true を、正則なら false を返します。
LUP 分解の結果を利用して判定します。
@see Matrix#singular?... -
Matrix
:: LUPDecomposition # to _ a -> [Matrix , Matrix , Matrix] (9010.0) -
分解した行列を [下半行列, 上半行列, 置換行列] という3要素の配列で 返します。
分解した行列を [下半行列, 上半行列, 置換行列] という3要素の配列で
返します。 -
Matrix
:: LUPDecomposition # to _ ary -> [Matrix , Matrix , Matrix] (9010.0) -
分解した行列を [下半行列, 上半行列, 置換行列] という3要素の配列で 返します。
分解した行列を [下半行列, 上半行列, 置換行列] という3要素の配列で
返します。 -
Matrix
:: LUPDecomposition # u -> Matrix (9010.0) -
LUP分解の上半行列部分を返します。
LUP分解の上半行列部分を返します。 -
Vector
# +@ -> self (9010.0) -
単項演算子の + です。 self を返します。
単項演算子の + です。 self を返します。 -
Vector
# -@ -> self (9010.0) -
単項演算子の - です。 各要素の符号を反転したベクトルを返します。
単項演算子の - です。 各要素の符号を反転したベクトルを返します。 -
Vector
# ==(v) -> bool (9010.0) -
自分自身と引数 v を比較し、true/false を返します。
自分自身と引数 v を比較し、true/false を返します。
@param v 比較対象ベクトル