クラス
-
Enumerator
:: Lazy (12) - Matrix (12)
-
Rake
:: TaskArguments (12) - Struct (48)
オブジェクト
- ENV (24)
検索結果
先頭5件
-
ENV
. values -> [String] (18202.0) -
環境変数の全値の配列を返します。
環境変数の全値の配列を返します。 -
ENV
. values _ at(*key) -> [String] (12208.0) -
引数で指定されたキー(環境変数名)に対応する値の配列を返します。存在 しないキーに対しては nil が対応します。
...。
例:
ENV.update({'FOO' => 'foo', 'BAR' => 'bar'})
p ENV.values_at(*%w(FOO BAR BAZ)) # => ["foo", "bar", nil]
@param key 環境変数名を指定します。文字列で指定します。
文字列以外のオブジェクトを指定した場合は to_str メソッドによる... -
Matrix
. diagonal(*values) -> Matrix (3230.0) -
対角要素がvaluesで、非対角要素が全て0であるような 正方行列を生成します。
...valuesで、非対角要素が全て0であるような
正方行列を生成します。
@param values 行列の対角要素
=== 注意
valuesに一次元Arrayを1個指定すると、そのArrayを唯一の要素とした1×1の行列が生成されます。
//emlist[例][ruby]{
require 'matri......x'
m = Matrix.diagonal(1, 2, 3)
p m # => Matrix[[1, 0, 0], [0, 2, 0], [0, 0, 3]]
a = [1,2,3]
m = Matrix.diagonal(a)
p m # => Matrix[[[1, 2, 3]]]
//}... -
Enumerator
:: Lazy . new(obj , size=nil) {|yielder , *values| . . . } -> Enumerator :: Lazy (3214.0) -
Lazy Enumerator を作成します。Enumerator::Lazy#force メソッドなどに よって列挙が実行されたとき、objのeachメソッドが実行され、値が一つずつ ブロックに渡されます。ブロックは、yielder を使って最終的に yield される値を 指定できます。
...Lazy Enumerator を作成します。Enumerator::Lazy#force メソッドなどに
よって列挙が実行されたとき、objのeachメソッドが実行され、値が一つずつ
ブロックに渡されます。ブロックは、yielder を使って最終的に yield される値を
指定で......st[Enumerable#filter_map と、その遅延評価版を定義する例][ruby]{
module Enumerable
def filter_map(&block)
map(&block).compact
end
end
class Enumerator::Lazy
def filter_map
Lazy.new(self) do |yielder, *values|
result = yield *values
yielder << result if result......end
end
end
1.step.lazy.filter_map{|i| i*i if i.even?}.first(5)
# => [4, 16, 36, 64, 100]
//}
@raise ArgumentError 引数を指定しなかった場合、ブロックを指定しなかった場合に発生します。
@see Enumerator.new... -
Rake
:: TaskArguments . new(names , values , parent = nil) (3208.0) -
自身を初期化します。
...。
@param values パラメータの値のリストを指定します。
@param parent 親となる Rake::TaskArguments を指定します。
//emlist[][ruby]{
# Rakefile での記載例とする
task default: :test_rake_app
task :test_rake_app do
arguments1 = Rake::TaskArguments.new(["name1",......)
arguments2 = Rake::TaskArguments.new(["name3", "name4"], ["value3", "value4"], arguments1)
p arguments1 # => #<Rake::TaskArguments name1: value1, name2: value2>
p arguments2 # => #<Rake::TaskArguments name3: value3, name4: value4>
p arguments2["name1"] # => "value1"
p arguments2["name3"]... -
Struct
. [](*args) -> Struct (3107.0) -
(このメソッドは Struct の下位クラスにのみ定義されています) 構造体オブジェクトを生成して返します。
...(このメソッドは Struct の下位クラスにのみ定義されています)
構造体オブジェクトを生成して返します。
@param args 構造体の初期値を指定します。メンバの初期値は指定されなければ nil です。
@return 構造体クラスのインス......タンス。
@raise ArgumentError 構造体のメンバの数よりも多くの引数を指定した場合に発生します。
//emlist[例][ruby]{
Foo = Struct.new(:foo, :bar)
foo = Foo.new(1)
p foo.values # => [1, nil]
//}... -
Struct
. new(*args) -> Struct (3107.0) -
(このメソッドは Struct の下位クラスにのみ定義されています) 構造体オブジェクトを生成して返します。
...(このメソッドは Struct の下位クラスにのみ定義されています)
構造体オブジェクトを生成して返します。
@param args 構造体の初期値を指定します。メンバの初期値は指定されなければ nil です。
@return 構造体クラスのインス......タンス。
@raise ArgumentError 構造体のメンバの数よりも多くの引数を指定した場合に発生します。
//emlist[例][ruby]{
Foo = Struct.new(:foo, :bar)
foo = Foo.new(1)
p foo.values # => [1, nil]
//}... -
Struct
. new(*args , keyword _ init: false) -> Class (3102.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...Struct クラスに新しいサブクラスを作って、それを返します。
サブクラスでは構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "......でした。
メンバ名に String を指定できるのは後方互換性のためだと考えた方が良いでしょう。
したがって、メンバ名は Symbol で指定するのが無難です。
@param args 構造体を定義するための可変長引数。String または Symbol を指......d_init true を指定すると、キーワード引数で初期化する構造体を定義します。
//emlist[例][ruby]{
Point = Struct.new(:x, :y, keyword_init: true) # => Point(keyword_init: true)
Point.new(x: 1, y: 2) # => #<struct Point x=1, y=2>
Point.new(x: 1) # => #<struct Point x=1... -
Struct
. new(*args , keyword _ init: false) {|subclass| block } -> Class (3102.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...Struct クラスに新しいサブクラスを作って、それを返します。
サブクラスでは構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "......でした。
メンバ名に String を指定できるのは後方互換性のためだと考えた方が良いでしょう。
したがって、メンバ名は Symbol で指定するのが無難です。
@param args 構造体を定義するための可変長引数。String または Symbol を指......d_init true を指定すると、キーワード引数で初期化する構造体を定義します。
//emlist[例][ruby]{
Point = Struct.new(:x, :y, keyword_init: true) # => Point(keyword_init: true)
Point.new(x: 1, y: 2) # => #<struct Point x=1, y=2>
Point.new(x: 1) # => #<struct Point x=1... -
Struct
. new(*args , keyword _ init: nil) -> Class (3102.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...Struct クラスに新しいサブクラスを作って、それを返します。
サブクラスでは構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "......でした。
メンバ名に String を指定できるのは後方互換性のためだと考えた方が良いでしょう。
したがって、メンバ名は Symbol で指定するのが無難です。
@param args 構造体を定義するための可変長引数。String または Symbol を指......定します。
@param keyword_init true を指定すると、キーワード引数で初期化する構造体を定義します。
Ruby 3.1 では互換性に影響のある使い方をしたときに警告が出るため、
従来の挙動を期待する構......@param keyword_init 構造体クラスのインスタンスを生成する際に、キーワード引数を使用するかどうかを指定します。値の意味は次のとおりです。
* nil: キーワード引数と位置引数のどちらを使用してもよい
* true: キーワー... -
Struct
. new(*args , keyword _ init: nil) {|subclass| block } -> Class (3102.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...Struct クラスに新しいサブクラスを作って、それを返します。
サブクラスでは構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "......でした。
メンバ名に String を指定できるのは後方互換性のためだと考えた方が良いでしょう。
したがって、メンバ名は Symbol で指定するのが無難です。
@param args 構造体を定義するための可変長引数。String または Symbol を指......定します。
@param keyword_init true を指定すると、キーワード引数で初期化する構造体を定義します。
Ruby 3.1 では互換性に影響のある使い方をしたときに警告が出るため、
従来の挙動を期待する構......@param keyword_init 構造体クラスのインスタンスを生成する際に、キーワード引数を使用するかどうかを指定します。値の意味は次のとおりです。
* nil: キーワード引数と位置引数のどちらを使用してもよい
* true: キーワー...