206件ヒット
[101-200件を表示]
(0.163秒)
クラス
キーワード
- % (12)
-
/ (11) - ceildiv (3)
- divide (24)
- divmod (24)
- fdiv (36)
-
int
_ from _ prime _ division (12) - modulo (12)
-
prime
_ division (24) -
prime
_ fasttest? (12) - quo (12)
検索結果
先頭5件
-
Prime
# prime _ division(value , generator= Prime :: Generator23 . new) -> [[Integer , Integer]] (6307.0) -
与えられた整数を素因数分解します。
...を素因数分解します。
@param value 素因数分解する任意の整数を指定します。
@param generator 素数生成器のインスタンスを指定します。
@return 素因数とその指数から成るペアを要素とする配列です。つまり、戻り値の各要素は2......roDivisionError 与えられた数値がゼロである場合に発生します。
//emlist[例][ruby]{
require 'prime'
Prime.prime_division(12) #=> [[2,2], [3,1]]
Prime.prime_division(10) #=> [[2,1], [5,1]]
//}
@see Prime.prime_division, Prime::EratosthenesGenerator, Prime::TrialDivisionGenerator......, Prime::Generator23... -
Numeric
# divmod(other) -> [Numeric] (6219.0) -
self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
...other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき: 0 <= r < oth......er
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
divmod が返す商は Numeric#div と同じです。
また余りは、Numeric#modulo と同じです。
このメソッドは、メソッド / と % によって定義されています。
@param other 自身を......割る数を指定します。
//emlist[例][ruby]{
11.divmod(3) #=> [3, 2]
(11.5).divmod(3.5) #=> [3, 1.0]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
//}
@see Numeric#div, Numeric#modulo... -
Complex
# fdiv(other) -> Complex (6207.0) -
self を other で割った商を返します。 実部と虚部が共に Float の値になります。
...self を other で割った商を返します。
実部と虚部が共に Float の値になります。
@param other 自身を割る数
//emlist[例][ruby]{
Complex(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
Complex(11, 22).quo(3) # => ((11/3)+(22/3)*i)
//}
@see Complex#quo... -
Numeric
# fdiv(other) -> Float | Complex (6207.0) -
self を other で割った商を Float で返します。 ただし Complex が関わる場合は例外です。 その場合も成分は Float になります。
...self を other で割った商を Float で返します。
ただし Complex が関わる場合は例外です。
その場合も成分は Float になります。
Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。
@param other 自身を割る......数を指定します。
//emlist[例][ruby]{
1.fdiv(3) #=> 0.3333333333333333
Complex(1, 1).fdiv 1 #=> (1.0+1.0i)
1.fdiv Complex(1, 1) #=> (0.5-0.5i)
//}
@see Numeric#quo... -
OpenSSL
:: BN # prime _ fasttest?(checks=nil , vtrivdiv=true) -> bool (6207.0) -
自身が素数であるなら true を返します。
...自身が素数であるなら true を返します。
vtrivdiv が真である場合には、 Miller-Rabin 法での
判定の前に小さな素数で割ることで素数か否かを
調べます。自身が小さな素数である場合にはこの手順
により素数ではないと誤った......す。
//emlist[][ruby]{
require 'openssl'
# 181 は 「小さな素数」である
OpenSSL::BN.new("181").prime_fasttest?(nil, true) # => false
OpenSSL::BN.new("181").prime_fasttest?(nil, false) # => true
//}
@param checks Miller-Robin法の繰り返しの回数
@param vtrivdiv 真なら小さ... -
Integer
# / (other) -> Numeric (3113.0) -
除算の算術演算子。
...算術演算子。
other が Integer の場合、整商(整数の商)を Integer で返します。
普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。
other が Float、Rational、Complex の場合、普通の商を other と
同じクラ......other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[例][ruby]{
7 / 2 # => 3
7 / -2 # => -4
7 / 2.0 # => 3.5
7 / Rational(2, 1) # => (7/2)
7 / Complex(2, 0) # => ((7/2)+0i)
begin
2 / 0
rescue => e
e # => #<ZeroDivisionError: divided by 0>
end
//}
@see Integer#div, Inte......ger#fdiv, Numeric#quo... -
Numeric
# quo(other) -> Rational | Float | Complex (123.0) -
self を other で割った商を返します。 整商を得たい場合は Numeric#div を使ってください。
...self を other で割った商を返します。
整商を得たい場合は Numeric#div を使ってください。
Numeric#fdiv が結果を Float で返すメソッドなのに対して quo はなるべく正確な数値を返すことを意図しています。
具体的には有理数の範......Rational の値を返します。
Float や Complex が関わるときはそれらのクラスになります。
Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。
@param other 自身を割る数を指定します。
//emlist[例][ruby]{
1.q......uo(3) #=> (1/3)
1.0.quo(3) #=> 0.3333333333333333
1.quo(3.0) #=> 0.3333333333333333
1.quo(0.5) #=> 2.0
Complex(1, 1).quo(1) #=> ((1/1)+(1/1)*i)
1.quo(Complex(1, 1)) #=> ((1/2)-(1/2)*i)
//}
@see Numeric#fdiv... -
Numeric
# %(other) -> Numeric (113.0) -
self を other で割った余り r を返します。
...self を other で割った余り r を返します。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき 0 <= r < other
* other < 0 のとき other < r <= 0
* q は整数
をみたす数です。
余り r は、other と同じ符号になります......。
商 q は、Numeric#div (あるいは 「/」)で求められます。
modulo はメソッド % の呼び出しとして定義されています。
@param other 自身を割る数を指定します。
//emlist[例][ruby]{
p 13.modulo(4) #=> 1
p (11.5).modulo(3.5) #=> 1.0
p 13.modulo(-4......) #=> -3
p (-13).modulo(4) #=> 3
p (-13).modulo(-4) #=> -1
p (-11).modulo(3.5) #=> 3.0
//}
@see Numeric#divmod, Numeric#remainder... -
Numeric
# modulo(other) -> Numeric (113.0) -
self を other で割った余り r を返します。
...self を other で割った余り r を返します。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき 0 <= r < other
* other < 0 のとき other < r <= 0
* q は整数
をみたす数です。
余り r は、other と同じ符号になります......。
商 q は、Numeric#div (あるいは 「/」)で求められます。
modulo はメソッド % の呼び出しとして定義されています。
@param other 自身を割る数を指定します。
//emlist[例][ruby]{
p 13.modulo(4) #=> 1
p (11.5).modulo(3.5) #=> 1.0
p 13.modulo(-4......) #=> -3
p (-13).modulo(4) #=> 3
p (-13).modulo(-4) #=> -1
p (-11).modulo(3.5) #=> 3.0
//}
@see Numeric#divmod, Numeric#remainder...