318件ヒット
[1-100件を表示]
(0.018秒)
種類
- インスタンスメソッド (204)
- 文書 (90)
- ライブラリ (12)
- クラス (12)
ライブラリ
クラス
- Enumerator (24)
-
Net
:: HTTP (12) -
Net
:: POP3 (12) -
Net
:: SMTP (24) - Set (96)
-
WEBrick
:: HTTPResponse (12) -
Zlib
:: Deflate (12) -
Zlib
:: Inflate (12)
キーワード
-
1
. 6 . 8から1 . 8 . 0への変更点(まとめ) (12) - CSV (12)
-
NEWS for Ruby 2
. 1 . 0 (12) -
NEWS for Ruby 2
. 7 . 0 (6) - Ruby プログラムの実行 (12)
- add (12)
- add? (12)
- clone (12)
-
debug
_ output= (12) - divide (24)
- dup (12)
- each (12)
- rss (12)
-
ruby 1
. 6 feature (12) -
ruby 1
. 8 . 2 feature (12) -
ruby 1
. 8 . 3 feature (12) -
set
_ debug _ output (36) -
set
_ dictionary (24) -
with
_ index (24) - 演算子式 (12)
検索結果
先頭5件
-
Set
# <<(o) -> self (35130.0) -
集合にオブジェクト o を加えます。
...<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
require 'set'
s = Set[1, 2]
s << 10
p s # => #<Set......: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//}......す。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2,......10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//}... -
Set
# add(o) -> self (20030.0) -
集合にオブジェクト o を加えます。
...<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
require 'set'
s = Set[1, 2]
s << 10
p s # => #<Set......: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//}... -
Set
# add?(o) -> self | nil (20030.0) -
集合にオブジェクト o を加えます。
...<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
require 'set'
s = Set[1, 2]
s << 10
p s # => #<Set......: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//}... -
Set
# divide {|o1 , o2| . . . } -> Set (17264.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
...require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,......# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}
//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'
board = Set.new
m, n = 8, 2
for i......for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6,... -
Set
# divide {|o| . . . } -> Set (17264.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
...require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,......# #<Set: {3, 4}>,
# #<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}
//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'
board = Set.new
m, n = 8, 2
for i......for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6,... -
Set
# clone -> Set (17138.0) -
集合を複製して返します。
...れも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。
Set クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
た......ため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してください。
//emlist[][ruby]{
require 'set'
s1 = Set[10, 20]
s2 = s1.dup
s2 << 30
p s1 # => #<Set: {10, 20}>
p s2 # => #<Set: {10, 20, 30}>
//}
@see Object#clone... -
Set
# dup -> Set (17138.0) -
集合を複製して返します。
...れも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。
Set クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
た......ため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してください。
//emlist[][ruby]{
require 'set'
s1 = Set[10, 20]
s2 = s1.dup
s2 << 30
p s1 # => #<Set: {10, 20}>
p s2 # => #<Set: {10, 20, 30}>
//}
@see Object#clone... -
Set
# each {|o| . . . } -> self (17018.0) -
集合の各要素についてブロックを実行します。
...集合の各要素についてブロックを実行します。
//emlist[][ruby]{
require 'set'
s = Set[10, 20]
ary = []
s.each {|num| ary << num + 1}
p ary # => [11, 21]
//}... -
Set
# add(o) -> self (12024.0) -
集合にオブジェクト o を加えます。
...す。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2,......10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//}... -
Set
# add?(o) -> self | nil (12024.0) -
集合にオブジェクト o を加えます。
...す。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2,......10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//}... -
Set
# divide {|o1 , o2| . . . } -> Set (9246.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
...ers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,
# #<Set: {3......#<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}
//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,......2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2, 2], [4, 1], [6, 2], [8,... -
Set
# divide {|o| . . . } -> Set (9246.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
...ers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}
//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # => #<Set: {#<Set: {1}>,
# #<Set: {3......#<Set: {6}>,
# #<Set: {9, 10, 11}>}>
//}
//emlist[応用例: 8x2 のチェス盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,......2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {#<Set: {[1, 1], [3, 2], [5, 1], [7, 2]}>,
# #<Set: {[1, 2], [3, 1], [5, 2], [7, 1]}>,
# #<Set: {[2, 1], [4, 2], [6, 1], [8, 2]}>,
# #<Set: {[2, 2], [4, 1], [6, 2], [8,... -
Set
# clone -> Set (9132.0) -
集合を複製して返します。
...れも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。
Set クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
た......せん。
このため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してください。
//emlist[][ruby]{
s1 = Set[10, 20]
s2 = s1.dup
s2 << 30
p s1 # => #<Set: {10, 20}>
p s2 # => #<Set: {10, 20, 30}>
//}
@see Object#clone... -
Set
# dup -> Set (9132.0) -
集合を複製して返します。
...れも共通して、内部記憶として保持するハッシュもコピーしますが、
集合の要素そのものはコピーしません。
Set クラスでは、dup と clone に共通して、内部記憶として
用いるハッシュも含めて taint 情報をコピーします。
た......せん。
このため、freeze された集合を clone した場合、生成された集合の要素は
変更可能である点に注意してください。
//emlist[][ruby]{
s1 = Set[10, 20]
s2 = s1.dup
s2 << 30
p s1 # => #<Set: {10, 20}>
p s2 # => #<Set: {10, 20, 30}>
//}
@see Object#clone... -
Set
# each {|o| . . . } -> self (9012.0) -
集合の各要素についてブロックを実行します。
...集合の各要素についてブロックを実行します。
//emlist[][ruby]{
s = Set[10, 20]
ary = []
s.each {|num| ary << num + 1}
p ary # => [11, 21]
//}... -
Zlib
:: Deflate # set _ dictionary(string) -> String (6119.0) -
圧縮に用いる辞書を指定します。string を返します。 このメソッドは Zlib::Deflate.new, Zlib::ZStream#reset を呼び出した直後にのみ有効です。詳細は zlib.h を参照して下さい。
...圧縮に用いる辞書を指定します。string を返します。
このメソッドは Zlib::Deflate.new, Zlib::ZStream#reset
を呼び出した直後にのみ有効です。詳細は zlib.h を参照して下さい。
@param string 辞書に用いる文字列を指定します。詳しく.......deflate(str)
comp_str << dez.finish
comp_str.size
end
def case2(str, dict)
dez = Zlib::Deflate.new
p dez.set_dictionary(dict)
comp_str = dez.deflate(str)
comp_str << dez.finish
comp_str.size
end
i = 10
dict = 'hoge_fuga_ugougo'
sset = [ dict, 'taeagbamike',......'ugotagma', 'fugebogya' ]
g = [ 0, 1, 1, 1, 0, 0, 0, 3, 3, 3, 0, 0, 1, 1, 0, 0, 0, 1, 2, 2, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0]
str = (1..i).collect{|m| t = rand(g.size); sset.at(g[t])}.join("")
printf "%d normal:%d, dict:%d\n", i, case1(str), case2(str, dict)...