別のキーワード
種類
- インスタンスメソッド (151)
- 特異メソッド (60)
- モジュール関数 (48)
- クラス (12)
クラス
- Array (21)
-
File
:: Stat (48) - Float (22)
- Integer (24)
- Regexp (12)
- String (24)
- Struct (48)
- TracePoint (12)
モジュール
- Kernel (48)
検索結果
先頭5件
-
Kernel
. # printf(format , *arg) -> nil (18180.0) -
C 言語の printf と同じように、format に従い引数を文字列に変 換して port に出力します。
...C 言語の printf と同じように、format に従い引数を文字列に変
換して port に出力します。
port を省略した場合は標準出力 $stdout に出力します。
引数を 1 つも指定しなければ何もしません。
Ruby における format 文字列の拡張......については
Kernel.#sprintfの項を参照してください。
@param port 出力先になるIO のサブクラスのインスタンスです。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@raise ArgumentError port を指定したの......][ruby]{
printf("calculate%3s%-6s%.15f", 'PI', '...', Math::PI)
#=> calculate PI... 3.141592653589793
printf("%d %04x", 123, 123) #=> "123 007b"
printf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'"
printf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello"
printf("%... -
Kernel
. # printf(port , format , *arg) -> nil (18180.0) -
C 言語の printf と同じように、format に従い引数を文字列に変 換して port に出力します。
...C 言語の printf と同じように、format に従い引数を文字列に変
換して port に出力します。
port を省略した場合は標準出力 $stdout に出力します。
引数を 1 つも指定しなければ何もしません。
Ruby における format 文字列の拡張......については
Kernel.#sprintfの項を参照してください。
@param port 出力先になるIO のサブクラスのインスタンスです。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@raise ArgumentError port を指定したの......][ruby]{
printf("calculate%3s%-6s%.15f", 'PI', '...', Math::PI)
#=> calculate PI... 3.141592653589793
printf("%d %04x", 123, 123) #=> "123 007b"
printf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'"
printf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello"
printf("%... -
Kernel
. # sprintf(format , *arg) -> String (3306.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
...の sprintf と同じように解釈し、
引数をフォーマットした文字列を返します。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の......sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、sprintf のすべての方言をサ
ポートしていないこと......うな表示をします。絶対値に符号を付けた形式
で出力するためには %+x、% x のように指定します。
以下は sprintf フォーマットの書式です。[] で囲まれた部分は省略可
能であることを示しています。
%[nth$][フラグ][幅][.精... -
Array
# pack(template) -> String (602.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
...いことに注意してください。
buffer のサイズ(capacity)が足りなければ、packはメモリを確保します。
//emlist[例][ruby]{
['!'].pack('@1a', buffer: 'abc') # => "a!"
['!'].pack('@5a', buffer: 'abc') # => "abc\u0000\u0000!"
//}
@param template 自身のバイナリと......][ruby]{
["abc"].pack("a") # => "a"
["abc"].pack("a*") # => "abc"
["abc"].pack("a4") # => "abc\x00"
"abc\0".unpack("a4") # => ["abc\x00"]
"abc ".unpack("a4") # => ["abc "]
//}
: A
ASCII文字列(スペースを詰める/後続するヌル文字やスペースを削除)
//emlist[][ruby]{......ist[][ruby]{
["abc"].pack("Z") # => "a"
["abc"].pack("Z*") # => "abc\x00"
["abc"].pack("Z5") # => "abc\x00\x00"
"abc\0".unpack("Z4") # => ["abc"]
"abc ".unpack("Z4") # => ["abc "]
//}
: b
ビットストリング(各バイトごとに下位ビットから上位ビット)
//emlist[][ruby]{
"\x... -
Array
# pack(template , buffer: String . new) -> String (602.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
...いことに注意してください。
buffer のサイズ(capacity)が足りなければ、packはメモリを確保します。
//emlist[例][ruby]{
['!'].pack('@1a', buffer: 'abc') # => "a!"
['!'].pack('@5a', buffer: 'abc') # => "abc\u0000\u0000!"
//}
@param template 自身のバイナリと......][ruby]{
["abc"].pack("a") # => "a"
["abc"].pack("a*") # => "abc"
["abc"].pack("a4") # => "abc\x00"
"abc\0".unpack("a4") # => ["abc\x00"]
"abc ".unpack("a4") # => ["abc "]
//}
: A
ASCII文字列(スペースを詰める/後続するヌル文字やスペースを削除)
//emlist[][ruby]{......ist[][ruby]{
["abc"].pack("Z") # => "a"
["abc"].pack("Z*") # => "abc\x00"
["abc"].pack("Z5") # => "abc\x00\x00"
"abc\0".unpack("Z4") # => ["abc"]
"abc ".unpack("Z4") # => ["abc "]
//}
: b
ビットストリング(各バイトごとに下位ビットから上位ビット)
//emlist[][ruby]{
"\x... -
Array
# pack(template) -> String (596.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
...][ruby]{
["abc"].pack("a") # => "a"
["abc"].pack("a*") # => "abc"
["abc"].pack("a4") # => "abc\x00"
"abc\0".unpack("a4") # => ["abc\x00"]
"abc ".unpack("a4") # => ["abc "]
//}
: A
ASCII文字列(スペースを詰める/後続するヌル文字やスペースを削除)
//emlist[][ruby]{......ist[][ruby]{
["abc"].pack("Z") # => "a"
["abc"].pack("Z*") # => "abc\x00"
["abc"].pack("Z5") # => "abc\x00\x00"
"abc\0".unpack("Z4") # => ["abc"]
"abc ".unpack("Z4") # => ["abc "]
//}
: b
ビットストリング(各バイトごとに下位ビットから上位ビット)
//emlist[][ruby]{
"\x......00001000000"].pack("b*") # => "\x01\x02"
//}
: B
ビットストリング(各バイトごとに上位ビットから下位ビット)
//emlist[][ruby]{
"\xFF\x00".unpack("B*") # => ["1111111100000000"]
"\x01\x02".unpack("B*") # => ["0000000100000010"]
"\x01\x02".unpack("B9") # => ["000000010"]... -
String
# unpack(template) -> Array (596.0) -
Array#pack で生成された文字列を テンプレート文字列 template にしたがってアンパックし、 それらの要素を含む配列を返します。
...][ruby]{
["abc"].pack("a") # => "a"
["abc"].pack("a*") # => "abc"
["abc"].pack("a4") # => "abc\x00"
"abc\0".unpack("a4") # => ["abc\x00"]
"abc ".unpack("a4") # => ["abc "]
//}
: A
ASCII文字列(スペースを詰める/後続するヌル文字やスペースを削除)
//emlist[][ruby]{......ist[][ruby]{
["abc"].pack("Z") # => "a"
["abc"].pack("Z*") # => "abc\x00"
["abc"].pack("Z5") # => "abc\x00\x00"
"abc\0".unpack("Z4") # => ["abc"]
"abc ".unpack("Z4") # => ["abc "]
//}
: b
ビットストリング(各バイトごとに下位ビットから上位ビット)
//emlist[][ruby]{
"\x......00001000000"].pack("b*") # => "\x01\x02"
//}
: B
ビットストリング(各バイトごとに上位ビットから下位ビット)
//emlist[][ruby]{
"\xFF\x00".unpack("B*") # => ["1111111100000000"]
"\x01\x02".unpack("B*") # => ["0000000100000010"]
"\x01\x02".unpack("B9") # => ["000000010"]... -
String
# %(args) -> String (222.0) -
printf と同じ規則に従って args をフォーマットします。
...
printf と同じ規則に従って args をフォーマットします。
args が配列であれば Kernel.#sprintf(self, *args) と同じです。
それ以外の場合は Kernel.#sprintf(self, args) と同じです。
@param args フォーマットする値、もしくはその配列
@retu......rn フォーマットされた文字列
//emlist[例][ruby]{
p "i = %d" % 10 # => "i = 10"
p "i = %x" % 10 # => "i = a"
p "i = %o" % 10 # => "i = 12"
p "i = %#d" % 10 # => "i = 10"
p "i = %#x" % 10 # => "i = 0xa"
p "i = %#o" % 10 # => "i = 012"
p "%d" % 10......"
//}
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、sprintf のすべ... -
Kernel
. # format(format , *arg) -> String (206.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
...の sprintf と同じように解釈し、
引数をフォーマットした文字列を返します。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の......sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、sprintf のすべての方言をサ
ポートしていないこと......うな表示をします。絶対値に符号を付けた形式
で出力するためには %+x、% x のように指定します。
以下は sprintf フォーマットの書式です。[] で囲まれた部分は省略可
能であることを示しています。
%[nth$][フラグ][幅][.精... -
Struct
. new(*args , keyword _ init: nil) -> Class (63.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...は構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "name:%s age:%d", fred.name, fred.age
#=> "name:fred age:6" を出力します
//}
実装の都合に......体を定義します。
Ruby 3.1 では互換性に影響のある使い方をしたときに警告が出るため、
従来の挙動を期待する構造体には明示的に false を指定してください。
//emlist[例][ruby]{
Point = Struct.new(:x, :......: z)
//}
//emlist[警告が出る例][ruby]{
Point = Struct.new(:x, :y)
Point.new(x: 1, y: 2) # => #<struct Point x={:x=>1, :y=>2}, y=nil>
# warning: Passing only keyword arguments to Struct#initialize will behave differently from Ruby 3.2. Please use a Hash literal like .... -
Struct
. new(*args , keyword _ init: nil) {|subclass| block } -> Class (63.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...は構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "name:%s age:%d", fred.name, fred.age
#=> "name:fred age:6" を出力します
//}
実装の都合に......体を定義します。
Ruby 3.1 では互換性に影響のある使い方をしたときに警告が出るため、
従来の挙動を期待する構造体には明示的に false を指定してください。
//emlist[例][ruby]{
Point = Struct.new(:x, :......: z)
//}
//emlist[警告が出る例][ruby]{
Point = Struct.new(:x, :y)
Point.new(x: 1, y: 2) # => #<struct Point x={:x=>1, :y=>2}, y=nil>
# warning: Passing only keyword arguments to Struct#initialize will behave differently from Ruby 3.2. Please use a Hash literal like .... -
Struct
. new(*args) -> Class (45.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...は構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "name:%s age:%d", fred.name, fred.age
#=> "name:fred age:6" を出力します
//}
実装の都合に......のが無難です。
@param args 構造体を定義するための可変長引数。String または Symbol を指定します。
//emlist[例][ruby]{
Point = Struct.new(:x, :y, keyword_init: true) # => Point(keyword_init: true)
Point.new(x: 1, y: 2) # => #<struct Point x=1, y=2>
Point.new(x: 1)......な指定はエラーになります。
//emlist[例][ruby]{
p Struct.new('foo', 'bar')
# => -:1:in `new': identifier foo needs to be constant (NameError)
//}
また args[1..-1] は、Symbol か String で指定します。
//emlist[例][ruby]{
p Struct.new("Foo", :foo, :bar) # => Struct::Foo
/... -
Struct
. new(*args) {|subclass| block } -> Class (45.0) -
Struct クラスに新しいサブクラスを作って、それを返します。
...は構造体のメンバに対するアクセスメソッドが定義されています。
//emlist[例][ruby]{
dog = Struct.new("Dog", :name, :age)
fred = dog.new("fred", 5)
fred.age = 6
printf "name:%s age:%d", fred.name, fred.age
#=> "name:fred age:6" を出力します
//}
実装の都合に......のが無難です。
@param args 構造体を定義するための可変長引数。String または Symbol を指定します。
//emlist[例][ruby]{
Point = Struct.new(:x, :y, keyword_init: true) # => Point(keyword_init: true)
Point.new(x: 1, y: 2) # => #<struct Point x=1, y=2>
Point.new(x: 1)......な指定はエラーになります。
//emlist[例][ruby]{
p Struct.new('foo', 'bar')
# => -:1:in `new': identifier foo needs to be constant (NameError)
//}
また args[1..-1] は、Symbol か String で指定します。
//emlist[例][ruby]{
p Struct.new("Foo", :foo, :bar) # => Struct::Foo
/...