るりまサーチ

最速Rubyリファレンスマニュアル検索!
306件ヒット [1-100件を表示] (0.031秒)

別のキーワード

  1. rbconfig ruby
  2. fiddle ruby_free
  3. fiddle build_ruby_platform
  4. rake ruby
  5. rubygems/defaults ruby_engine

ライブラリ

クラス

キーワード

検索結果

<< 1 2 3 ... > >>

Integer#div(other) -> Integer (18149.0)

整商(整数の商)を返します。 普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。

...

div
に対応する剰余メソッドは modulo です。

@param other 二項演算の右側の引数(対象)
@return 計算結果

//emlist[例][ruby]{
7.div(2) # => 3
7.div(-2) # => -4
7.div(2.0) # => 3
7.div(Rational(2, 1)) # => 3

begin
2.div(0)
rescue => e
e # => #<ZeroDivisionError: div...
...ided by 0>
end

begin
2.div(0.0)
rescue => e
e # => #<ZeroDivisionError: divided by 0>
# Integer#/ と違い、引数が Float でもゼロで割ることはできない
end
//}

@see Integer#fdiv, Integer#/, Integer#modulo...

Numeric#div(other) -> Integer (18131.0)

self を other で割った整数の商 q を返します。

...
div
はメソッド / を呼びだし、floorを取ることで計算されます。

メソッド / の定義はサブクラスごとの定義を用います。

@param other 自身を割る数を指定します。

//emlist[例][ruby]{
p 3.div(2) # => 1
p (-3).div(2) # => -2
p (-3.0).div(2) #...

Numeric#divmod(other) -> [Numeric] (6118.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

...数です。
div
mod が返す商は Numeric#div と同じです。
また余りは、Numeric#modulo と同じです。
このメソッドは、メソッド / と % によって定義されています。

@param other 自身を割る数を指定します。

//emlist[例][ruby]{
11.divmod(3)...
...#=> [3, 2]
(11.5).divmod(3.5) #=> [3, 1.0]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
//}

@see Numeric#div, Numeric#modulo...

Set#divide {|o1, o2| ... } -> Set (6118.0)

元の集合をブロックで定義される関係で分割し、その結果を集合として返します。

...ません。

//emlist[例1][ruby]{
require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}...
...、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'

board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<...
...果が得られません。

//emlist[例1][ruby]{
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # =...
...盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {...

Set#divide {|o| ... } -> Set (6118.0)

元の集合をブロックで定義される関係で分割し、その結果を集合として返します。

...ません。

//emlist[例1][ruby]{
require 'set'
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
require 'set'
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}...
...、ナイトが到達できる位置に関する分類を作成します。][ruby]{
require 'set'

board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<...
...果が得られません。

//emlist[例1][ruby]{
numbers = Set.new(1..6)
set = numbers.divide {|i| i % 3}
p set
# => #<Set: {#<Set: {1, 4}>, #<Set: {2, 5}>, #<Set: {3, 6}>}>
//}

//emlist[例2][ruby]{
numbers = Set[1, 3, 4, 6, 9, 10, 11]
set = numbers.divide {|i, j| (i - j).abs == 1}
p set # =...
...盤上で、ナイトが到達できる位置に関する分類を作成します。][ruby]{
board = Set.new
m, n = 8, 2
for i in 1..m
for j in 1..n
board << [i,j]
end
end
knight_move = Set[1,2]
p board.divide { |i,j|
Set[(i[0] - j[0]).abs, (i[1] - j[1]).abs] == knight_move
}
# => #<Set: {...

絞り込み条件を変える

Float#divmod(other) -> [Numeric] (6112.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。

...ます。

@param other 自身を割る数を指定します。

//emlist[例][ruby]{
11.divmod(3) # => [3, 2]
(11.5).divmod(3.5) # => [3, 1.0]
11.divmod(-3) # => [-4, -1]
11.divmod(3.5) # => [3, 0.5]
(-11).divmod(3.5) # => [-4, 3.0]
//}

@see Numeric#div, Numeric#modulo...

BigDecimal#divmod(n) -> [BigDecimal, BigDecimal] (6106.0)

self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にし て返します。

...り r を、 [q, r] という 2 要素の配列にし
て返します。

商は負の無限大負方向に丸められます。

@param n self を割る数を指定します。

//emlist[][ruby]{
require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

a.divmod(b) # => [0.4e1, 0.6e1]
//}...

Complex#fdiv(other) -> Complex (6106.0)

self を other で割った商を返します。 実部と虚部が共に Float の値になります。

...elf を other で割った商を返します。
実部と虚部が共に Float の値になります。

@param other 自身を割る数

//emlist[例][ruby]{
Complex(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
Complex(11, 22).quo(3) # => ((11/3)+(22/3)*i)
//}

@see Complex#quo...

Integer#ceildiv(other) -> Integer (6106.0)

self を other で割り、その(剰余を考えない)商を整数に切り上げたものを返します。 すなわち、self を other で割った商を q とすると、q 以上で最小の整数を返します。

...r で割った商を q とすると、q 以上で最小の整数を返します。

@param other self を割る数を指定します。

//emlist[][ruby]{
3.ceildiv(3) # => 1
4.ceildiv(3) # => 2
5.ceildiv(3) # => 2
3.ceildiv(1.2) # => 3
-5.ceildiv(3) # => -1
-5.ceildiv(-3) # => 2
//}...

Integer#prime_division(generator = Prime::Generator23.new) -> [[Integer, Integer]] (6106.0)

自身を素因数分解した結果を返します。

...、第2要素は n**e が self を割り切る最大の自然数 e です。

@raise ZeroDivisionError self がゼロである場合に発生します。

@see Prime#prime_division

//emlist[例][ruby]{
require 'prime'
12.prime_division #=> [[2,2], [3,1]]
10.prime_division #=> [[2,1], [5,1]]
//}...

絞り込み条件を変える

<< 1 2 3 ... > >>