別のキーワード
キーワード
- % (12)
- & (12)
- * (12)
- ** (12)
- + (12)
- - (12)
- -@ (12)
-
/ (11) - < (12)
- << (12)
- <= (12)
- <=> (12)
- == (12)
- === (12)
- > (12)
- >= (12)
- >> (12)
- [] (24)
- ^ (12)
- abs (12)
- allbits? (8)
- anybits? (8)
-
bit
_ length (12) - ceil (12)
- ceildiv (3)
- chr (24)
- denominator (12)
- digits (24)
- div (12)
- downto (24)
- even? (12)
- floor (12)
- gcd (12)
- gcdlcm (12)
- inspect (12)
- integer? (12)
- lcm (12)
- magnitude (12)
- modulo (12)
- next (12)
- nobits? (8)
- numerator (12)
- odd? (12)
- ord (12)
- pow (24)
- pred (12)
- prime? (12)
-
prime
_ division (12) - rationalize (24)
- remainder (12)
- round (12)
- size (12)
- succ (12)
- times (24)
-
to
_ bn (12) -
to
_ f (12) -
to
_ i (12) -
to
_ int (12) -
to
_ r (12) -
to
_ s (12) - truncate (12)
- upto (24)
- | (12)
- ~ (12)
検索結果
先頭5件
-
Integer
# to _ s(base=10) -> String (9214.0) -
整数を 10 進文字列表現に変換します。
...表
現に変換します。
//emlist[][ruby]{
p 10.to_s(2) # => "1010"
p 10.to_s(8) # => "12"
p 10.to_s(16) # => "a"
p 35.to_s(36) # => "z"
//}
@return 数値の文字列表現
@param base 基数となる 2 - 36 の数値。
@raise ArgumentError base に 2 - 36 以外の数値を指... -
Integer
# truncate(ndigits = 0) -> Integer (9214.0) -
0 から self までの整数で、自身にもっとも近い整数を返します。
...@param ndigits 10進数での小数点以下の有効桁数を整数で指定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。
//emlist[][ruby]{
1.truncate # => 1
1.truncate(2) # => 1
18.trunca......te(-1) # => 10
(-18).truncate(-1) # => -10
//}
@see Numeric#truncate... -
Integer
# truncate(ndigits = 0) -> Integer | Float (9214.0) -
0 から self までの整数で、自身にもっとも近い整数を返します。
...。
@param ndigits 10進数での小数点以下の有効桁数を整数で指定します。
正の整数を指定した場合、Float を返します。
小数点以下を、最大 n 桁にします。
負の整数を指定した場合、Integer を返......します。
小数点位置から左に少なくとも n 個の 0 が並びます。
//emlist[][ruby]{
1.truncate # => 1
1.truncate(2) # => 1.0
18.truncate(-1) # => 10
(-18).truncate(-1) # => -10
//}
@see Numeric#truncate... -
Integer
# to _ i -> self (9121.0) -
self を返します。
...self を返します。
//emlist[][ruby]{
10.to_i # => 10
//}... -
Integer
# to _ int -> self (9121.0) -
self を返します。
...self を返します。
//emlist[][ruby]{
10.to_i # => 10
//}... -
Integer
# allbits?(mask) -> bool (9114.0) -
self & mask の全てのビットが 1 なら true を返します。
...true を返します。
self & mask == mask と等価です。
@param mask ビットマスクを整数で指定します。
//emlist[][ruby]{
42.allbits?(42) # => true
0b1010_1010.allbits?(0b1000_0010) # => true
0b1010_1010.allbits?(0b1000_0001) # => false
0b1000_0010.allbits?(......0b1010_1010) # => false
//}
@see Integer#anybits?
@see Integer#nobits?... -
Integer
# anybits?(mask) -> bool (9114.0) -
self & mask のいずれかのビットが 1 なら true を返します。
...ら true を返します。
self & mask != 0 と等価です。
@param mask ビットマスクを整数で指定します。
//emlist[][ruby]{
42.anybits?(42) # => true
0b1010_1010.anybits?(0b1000_0010) # => true
0b1010_1010.anybits?(0b1000_0001) # => true
0b1000_0010.anybits?(0......b0010_1100) # => false
//}
@see Integer#allbits?
@see Integer#nobits?... -
Integer
# nobits?(mask) -> bool (9114.0) -
self & mask のすべてのビットが 0 なら true を返します。
...ら true を返します。
self & mask == 0 と等価です。
@param mask ビットマスクを整数で指定します。
//emlist[][ruby]{
42.nobits?(42) # => false
0b1010_1010.nobits?(0b1000_0010) # => false
0b1010_1010.nobits?(0b1000_0001) # => false
0b0100_0101.nobits?(0b......1010_1010) # => true
//}
@see Integer#allbits?
@see Integer#anybits?... -
Integer
# times {|n| . . . } -> self (9114.0) -
self 回だけ繰り返します。 self が正の整数でない場合は何もしません。
...れます。
//emlist[][ruby]{
3.times { puts "Hello, World!" } # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" } # 何も表示されない。
5.times {|n| print n } # 01234 と表示される。
//}
@see Integer#upto, Integer#downto, Numeric#step... -
Integer
# [](nth) -> Integer (6310.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
...す。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1)......と同じ
@return self[i...j] は (n >> i) & ((1 << (j - i)) - 1) と同じ
@return self[i..] は (n >> i) と同じ
@return self[..j] は n & ((1 << (j + 1)) - 1) が 0 なら 0
@return self[...j] は n & ((1 << j) - 1) が 0 なら 0
@raise ArgumentError self[..j] で n & ((1 << (......き
@raise ArgumentError self[...j] で n & ((1 << j) - 1) が 0 以外のとき
//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100000111000011110010100111100010111001
//}
n[i]... -
Integer
# [](nth , len) -> Integer (6310.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
...す。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1)......と同じ
@return self[i...j] は (n >> i) & ((1 << (j - i)) - 1) と同じ
@return self[i..] は (n >> i) と同じ
@return self[..j] は n & ((1 << (j + 1)) - 1) が 0 なら 0
@return self[...j] は n & ((1 << j) - 1) が 0 なら 0
@raise ArgumentError self[..j] で n & ((1 << (......き
@raise ArgumentError self[...j] で n & ((1 << j) - 1) が 0 以外のとき
//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100000111000011110010100111100010111001
//}
n[i]... -
Integer
# [](range) -> Integer (6310.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
...す。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1)......と同じ
@return self[i...j] は (n >> i) & ((1 << (j - i)) - 1) と同じ
@return self[i..] は (n >> i) と同じ
@return self[..j] は n & ((1 << (j + 1)) - 1) が 0 なら 0
@return self[...j] は n & ((1 << j) - 1) が 0 なら 0
@raise ArgumentError self[..j] で n & ((1 << (......き
@raise ArgumentError self[...j] で n & ((1 << j) - 1) が 0 以外のとき
//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100000111000011110010100111100010111001
//}
n[i]... -
Integer
# [](nth) -> Integer (6238.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
...@param nth 何ビット目を指すかの数値
@return 1 か 0
//emlist[][ruby]{
a = 0b11001100101010
30.downto(0) {|n| print a[n] }
# => 0000000000000000011001100101010
a = 9**15
50.downto(0) {|n| print a[n] }
# => 000101110110100000111000011110010100111100010111001
//}
n[i] は (n >> i)......& 1 と等価なので、負のインデックスは常に 0 を返します。
//emlist[][ruby]{
p 255[-1] # => 0
//}
self[nth]=bit (つまりビットの修正) がないのは、Numeric 関連クラスが
immutable であるためです。... -
Integer
# **(other) -> Numeric (6226.0) -
算術演算子。冪(べき乗)を計算します。
...aram other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@rai......se RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
3.pow(3, 8) # => 3
3.pow(3, -8) # => -5
3.pow(2, -2) # => -1
-3.pow(3, 8) # => 5
-3.pow(3, -8) # => -3
5.pow(2, -8) # => -7
//}
結果が......になりそうなとき、警告を出したうえで Float::INFINITY を返します。
//emlist[計算を放棄して Float::INFINITY を返す例][ruby]{
p 100**9999999
# => warning: in a**b, b may be too big
# Infinity
//}
判定の閾値は変わりえます。
@see BigDecimal#power...