48件ヒット
[1-48件を表示]
(0.046秒)
別のキーワード
クラス
- Matrix (36)
-
Matrix
:: LUPDecomposition (12)
キーワード
-
cofactor
_ expansion (12) - component (12)
-
laplace
_ expansion (12) - solve (12)
検索結果
先頭4件
-
Matrix
# cofactor _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (6221.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...わりにMatrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1......=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrD......imensionMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor... -
Matrix
# laplace _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (6221.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...わりにMatrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1......=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrD......imensionMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor... -
Matrix
# component(i , j) -> () (3121.0) -
(i,j)要素を返します。 行列の範囲外の値を指定した場合には nil を返します。
...には nil を返します。
@param i 要素の行成分を0オリジンで指定します。
@param j 要素の列成分を0オリジンで指定します。
//emlist[例][ruby]{
require 'matrix'
a1 = [1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, 2, 1.5]
m = Matrix[a1, a2, a3]
p m[0, 0] # => 1
p m[1... -
Matrix
:: LUPDecomposition # solve(b) -> Vector | Matrix (3015.0) -
self が正方行列 A の LUP 分解の時、一次方程式 Ax = b の解を返します。 b には Vector, Matrix, 数値の配列を指定出来ます。
...Vector, Matrix, 数値の配列を指定出来ます。
それぞれベクトルのサイズ、行列の行数、配列のサイズが A の列数と一致していなければなりません。
返り値は b が行列なら行列、それ以外はベクトルになります。
@param b 一次......を指定します。
//emlist[][ruby]{
require 'matrix'
lup = Matrix[[2, 1], [1, 2]].lup
lup.solve([1, -1]) #=> Vector[(1/1), (-1/1)]
lup.solve(Vector[3, 0]) #=> Vector[(2/1), (-1/1)]
lup.solve(Matrix[[1, 3], [-1, 0]]) #=> Matrix[[(1/1), (2/1)], [(-1/1), (-1/1)]]
//...