60件ヒット
[1-60件を表示]
(0.021秒)
キーワード
- [] (12)
-
cofactor
_ expansion (12) - component (12)
- element (12)
-
laplace
_ expansion (12)
検索結果
先頭5件
-
Vector
# [](i) -> object | nil (205.0) -
i 番目の要素を返します。インデックスは 0 から開始します。 要素が存在しないインデックスを指定した時には nil を返します。
i 番目の要素を返します。インデックスは 0 から開始します。
要素が存在しないインデックスを指定した時には nil を返します。
@param i 取得する要素のインデックスを整数値で指定します。
インデックスは 0 から始めます。 -
Vector
# component(i) -> object | nil (205.0) -
i 番目の要素を返します。インデックスは 0 から開始します。 要素が存在しないインデックスを指定した時には nil を返します。
i 番目の要素を返します。インデックスは 0 から開始します。
要素が存在しないインデックスを指定した時には nil を返します。
@param i 取得する要素のインデックスを整数値で指定します。
インデックスは 0 から始めます。 -
Vector
# element(i) -> object | nil (205.0) -
i 番目の要素を返します。インデックスは 0 から開始します。 要素が存在しないインデックスを指定した時には nil を返します。
i 番目の要素を返します。インデックスは 0 から開始します。
要素が存在しないインデックスを指定した時には nil を返します。
@param i 取得する要素のインデックスを整数値で指定します。
インデックスは 0 から始めます。 -
Matrix
# cofactor _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (204.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...Matrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1) # => 45......
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrDimensi......onMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor... -
Matrix
# laplace _ expansion(row: nil , column: nil) -> object | Integer | Rational | Float (204.0) -
row 行、もしくは column 列に関するラプラス展開をする。
...Matrix#determinant を
利用すべきです。
変則的な形状の行列に対してはそれ以上の意味を持ちます。例えば
row行/column列が行列やベクトルである場合には
//emlist[例][ruby]{
require 'matrix'
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1) # => 45......
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) # => Vector[3, -2]
//}
@param row 行
@param column 列
@raise ArgumentError row と column を両方指定した、もしくは両方とも指定していない、場合に発生します
@raise ExceptionForMatrix::ErrDimensi......onMismatch 行列が正方でない場合に発生します
@see Matrix#cofactor...