162件ヒット
[1-100件を表示]
(0.070秒)
別のキーワード
ライブラリ
- matrix (162)
キーワード
- adjugate (12)
- antisymmetric? (7)
-
cofactor
_ expansion (12) - det (12)
- determinant (12)
- eigen (12)
- eigensystem (12)
-
entrywise
_ product (8) -
hadamard
_ product (8) - hstack (12)
-
laplace
_ expansion (12) - regular? (12)
-
skew
_ symmetric? (7) - trace (12)
検索結果
先頭5件
-
Matrix
# tr -> Integer | Float | Rational | Complex (21121.0) -
トレース (trace) を返します。
...トレース (trace) を返します。
行列のトレース (trace) とは、対角要素の和です。
//emlist[例][ruby]{
require 'matrix'
Matrix[[7,6], [3,9]].trace # => 16
//}
trace は正方行列でのみ定義されます。
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が... -
Matrix
# entrywise _ product(m) -> Matrix (9220.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# trace -> Integer | Float | Rational | Complex (9121.0) -
トレース (trace) を返します。
...トレース (trace) を返します。
行列のトレース (trace) とは、対角要素の和です。
//emlist[例][ruby]{
require 'matrix'
Matrix[[7,6], [3,9]].trace # => 16
//}
trace は正方行列でのみ定義されます。
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が... -
Matrix
# antisymmetric? -> bool (9120.0) -
行列が反対称行列 (交代行列、歪〔わい〕対称行列とも) ならば true を返します。
...ば true を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
//emlist[][ruby]{
require 'matrix'
Matrix[[0, -2, Complex(1, 3)], [2, 0, 5], [-Complex(1, 3), -5, 0]].antisymmetric? # => true
Matrix.empty.antisymmetric? # => true......Matrix[[1, 2, 3], [4, 5, 6], [7, 8, 9]].antisymmetric? # => false
# 対角要素が違う
Matrix[[1, -2, 3], [2, 0, 6], [-3, -6, 0]].antisymmetric? # => false
# 符号が違う
Matrix[[0, 2, -3], [2, 0, 6], [-3, 6, 0]].antisymmetric? # => false
//}... -
Matrix
# skew _ symmetric? -> bool (9120.0) -
行列が反対称行列 (交代行列、歪〔わい〕対称行列とも) ならば true を返します。
...ば true を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
//emlist[][ruby]{
require 'matrix'
Matrix[[0, -2, Complex(1, 3)], [2, 0, 5], [-Complex(1, 3), -5, 0]].antisymmetric? # => true
Matrix.empty.antisymmetric? # => true......Matrix[[1, 2, 3], [4, 5, 6], [7, 8, 9]].antisymmetric? # => false
# 対角要素が違う
Matrix[[1, -2, 3], [2, 0, 6], [-3, -6, 0]].antisymmetric? # => false
# 符号が違う
Matrix[[0, 2, -3], [2, 0, 6], [-3, 6, 0]].antisymmetric? # => false
//}... -
Matrix
# hadamard _ product(m) -> Matrix (6120.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# hstack(*matrices) -> Matrix (3220.0) -
行列 self と matrices を横に並べた行列を生成します。
...行列 self と matrices を横に並べた行列を生成します。
Matrix.hstack(self, *matrices) と同じです。
//emlist[例][ruby]{
require 'matrix'
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
//}
@param matrices 並べる行......列。すべての行列の行数がselfの行数と一致していなければならない
@raise ExceptionForMatrix::ErrDimensionMismatch 行数の異なる行列がある場合に発生します
@see Matrix.hstack, Matrix#vstack... -
Matrix
# adjugate -> Matrix (3120.0) -
余因子行列を返します。
...余因子行列を返します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[7,6],[3,9]].adjugate # => Matrix[[9, -6], [-3, 7]]
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方でない場合に発生します。
@see Matrix#cofactor... -
Matrix
# eigen -> Matrix :: EigenvalueDecomposition (3120.0) -
行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
...行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
Matrix::EigenvalueDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(右固有ベクトル、固有値行列、左固有ベクトル)
を得ることがで......st[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
@see Matrix::Eigen... -
Matrix
# eigensystem -> Matrix :: EigenvalueDecomposition (3120.0) -
行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
...行列の固有値と左右の固有ベクトルを保持したオブジェクトを返します。
Matrix::EigenvalueDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(右固有ベクトル、固有値行列、左固有ベクトル)
を得ることがで......st[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します
@see Matrix::Eigen...