545件ヒット
[401-500件を表示]
(0.041秒)
別のキーワード
キーワード
- [] (12)
- []= (7)
- adjugate (12)
- antisymmetric? (7)
- coerce (12)
-
cofactor
_ expansion (12) - collect (24)
- collect! (14)
- column (24)
- component (12)
- det (12)
- determinant (12)
- each (24)
-
each
_ with _ index (24) - eigen (12)
- eigensystem (12)
- element (12)
-
entrywise
_ product (8) -
find
_ index (36) -
hadamard
_ product (8) - hstack (12)
- index (36)
-
laplace
_ expansion (12) - lup (12)
-
lup
_ decomposition (12) - map (24)
- map! (14)
- minor (24)
- rect (12)
- rectangular (12)
- regular? (12)
- row (24)
-
skew
_ symmetric? (7) - tr (12)
- trace (12)
- vstack (12)
検索結果
先頭5件
-
Matrix
# hadamard _ product(m) -> Matrix (22.0) -
アダマール積(要素ごとの積)を返します。
...ダマール積(要素ごとの積)を返します。
@raise ExceptionForMatrix::ErrDimensionMismatch 行や列の要素数が一致しない時に発生します。
//emlist[例][ruby]{
require 'matrix'
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) # => Matrix[[1, 4], [9, 8]]
//}... -
Matrix
# lup -> Matrix :: LUPDecomposition (22.0) -
行列の LUP 分解を保持したオブジェクトを返します。
...
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'......a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
//}
@see Matrix::LUPDecomposition... -
Matrix
# lup _ decomposition -> Matrix :: LUPDecomposition (22.0) -
行列の LUP 分解を保持したオブジェクトを返します。
...
Matrix::LUPDecomposition は to_ary を定義しているため、
多重代入によって3つの行列(下三角行列、上三角行列、置換行列)
を得ることができます。これを [L, U, P] と書くと、
L*U = P*self を満たします。
//emlist[例][ruby]{
require 'matrix'......a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
//}
@see Matrix::LUPDecomposition... -
Matrix
# map -> Enumerator (22.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...適用を繰り返した結果を、要素として持つ行列を生成します。
ブロックがない場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
//}
@see Matrix#each... -
Matrix
# map {|x| . . . } -> Matrix (22.0) -
行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。
...適用を繰り返した結果を、要素として持つ行列を生成します。
ブロックがない場合、 Enumerator を返します。
//emlist[例][ruby]{
require 'matrix'
m = Matrix[[1, 2], [3, 4]]
p m.map { |x| x + 100 } # => Matrix[[101, 102], [103, 104]]
//}
@see Matrix#each... -
Matrix
# rect -> [Matrix , Matrix] (22.0) -
行列を実部と虚部に分解したものを返します。
...行列を実部と虚部に分解したものを返します。
//emlist[例][ruby]{
m.rect == [m.real, m.imag] # ==> true for all matrices m
//}
@see Matrix#imaginary, Matrix#real... -
Matrix
# rectangular -> [Matrix , Matrix] (22.0) -
行列を実部と虚部に分解したものを返します。
...行列を実部と虚部に分解したものを返します。
//emlist[例][ruby]{
m.rect == [m.real, m.imag] # ==> true for all matrices m
//}
@see Matrix#imaginary, Matrix#real... -
Matrix
# regular? -> bool (22.0) -
行列が正方で正則なら true を、特異なら false を返します。
...例外 ExceptionForMatrix::ErrDimensionMismatch を
発生させます。
//emlist[例][ruby]{
require 'matrix'
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.regular? # => true
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, -3]
m = Matrix[a1, a2, a3]
p m.re......gular? # => false
a1 = [ 1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
a4 = [1, 1, 1]
m = Matrix[a1, a2, a3, a4]
p m.regular? # => raise ExceptionForMatrix::ErrDimensionMismatch
//}
@raise ExceptionForMatrix::ErrDimensionMismatch 行列が正方行列でない場合に発生します... -
Matrix
# row(i) -> Vector | nil (22.0) -
i 番目の行を Vector オブジェクトで返します。 i 番目の行が存在しない場合は nil を返します。 ブロックが与えられた場合はその行の各要素についてブロックを繰り返します。
...各要素についてブロックを繰り返します。
Vector オブジェクトは Matrix オブジェクトとの演算の際には列ベクトルとして扱われることに注意してください。
@param i 行の位置を指定します。
先頭の行が 0 番目になりま......のインデックスと見倣します。末尾の行が -1 番目になります。
//emlist[例][ruby]{
require 'matrix'
a1 = [1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.row(1) # => Vector[10, 15, 20]
cnt = 0
m.row(0) { |x|
cnt = cnt + x
}
p cnt # => 6
//}... -
Matrix
# row(i) {|x| . . . } -> self (22.0) -
i 番目の行を Vector オブジェクトで返します。 i 番目の行が存在しない場合は nil を返します。 ブロックが与えられた場合はその行の各要素についてブロックを繰り返します。
...各要素についてブロックを繰り返します。
Vector オブジェクトは Matrix オブジェクトとの演算の際には列ベクトルとして扱われることに注意してください。
@param i 行の位置を指定します。
先頭の行が 0 番目になりま......のインデックスと見倣します。末尾の行が -1 番目になります。
//emlist[例][ruby]{
require 'matrix'
a1 = [1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.row(1) # => Vector[10, 15, 20]
cnt = 0
m.row(0) { |x|
cnt = cnt + x
}
p cnt # => 6
//}...