別のキーワード
クラス
-
ARGF
. class (2) - Array (31)
- BasicObject (1)
- Binding (1)
- Complex (2)
- Dir (3)
-
Encoding
:: Converter (4) - Enumerator (2)
- File (10)
-
File
:: Stat (17) - Float (9)
- Hash (3)
- IO (16)
- Integer (70)
- MatchData (6)
- Method (3)
- Module (2)
- NilClass (1)
- Numeric (18)
- Object (8)
- Proc (2)
- Random (8)
- Range (2)
- Rational (7)
- Regexp (7)
- RubyVM (1)
-
RubyVM
:: AbstractSyntaxTree :: Node (4) -
RubyVM
:: InstructionSequence (1) - SignalException (1)
- String (26)
- Struct (6)
- Thread (6)
-
Thread
:: Backtrace :: Location (1) -
Thread
:: Mutex (1) -
Thread
:: Queue (3) -
Thread
:: SizedQueue (1) - Time (26)
- TracePoint (1)
- UnboundMethod (4)
モジュール
- Enumerable (19)
- FileTest (1)
- GC (3)
- Kernel (22)
- Marshal (2)
- Math (3)
- ObjectSpace (4)
- Process (5)
キーワード
-
$ $ (1) -
$ . (1) - % (2)
- & (1)
- * (1)
- ** (1)
- + (1)
- - (1)
- -@ (1)
-
/ (1) - < (1)
- << (2)
- <= (1)
- <=> (3)
- == (1)
- === (1)
- =~ (2)
- > (1)
- >= (1)
- >> (1)
- DEBUG (1)
- DEBUG= (1)
-
DEFAULT
_ PARAMS (1) -
MAJOR
_ VERSION (1) -
MINOR
_ VERSION (1) - Numeric (1)
-
RUBY
_ PATCHLEVEL (1) - Rational (2)
- [] (4)
- []= (1)
- ^ (1)
-
_ _ id _ _ (1) - abs (1)
-
add
_ trace _ func (1) - all? (6)
- allbits? (1)
- any? (6)
- anybits? (1)
- arity (3)
- at (6)
- begin (1)
- binwrite (1)
-
bit
_ length (1) - blksize (1)
- blocks (1)
-
bsearch
_ index (2) - bytes (2)
- bytesize (1)
- ceil (4)
- chown (1)
- chr (3)
- class (1)
- codepoints (2)
- coerce (1)
- compile (1)
- concat (2)
-
const
_ source _ location (1) -
copy
_ stream (2) - count (8)
- day (1)
- delete (1)
- denominator (4)
-
dev
_ major (1) -
dev
_ minor (1) - dig (1)
- digits (2)
- div (2)
- downto (2)
-
each
_ object (4) - end (1)
- even? (1)
- fcntl (1)
- fileno (2)
-
find
_ index (6) -
first
_ column (1) -
first
_ lineno (2) - floor (4)
- fork (2)
- format (1)
- frexp (1)
- gcd (1)
- gcdlcm (1)
- getbyte (2)
- gid (1)
-
gmt
_ offset (1) - gmtoff (1)
- groups (1)
- hash (10)
- hex (1)
- hour (1)
- index (4)
- ino (1)
- inspect (1)
- integer? (2)
-
last
_ column (1) -
last
_ lineno (1) - lchmod (1)
- lchown (1)
- lcm (1)
- length (6)
- lgamma (1)
- lineno (2)
- magnitude (1)
- max (1)
- mday (1)
- method (1)
- min (1)
- mode (1)
- modulo (1)
- mon (1)
- month (1)
-
named
_ captures (1) - new (2)
-
new
_ seed (1) - next (1)
- nlink (1)
- nobits? (1)
- nsec (1)
-
num
_ waiting (1) - numerator (3)
-
object
_ id (1) - oct (1)
- odd? (1)
- offset (2)
- one? (6)
- ord (2)
- owner (1)
- pack (2)
- pid (1)
- pos (2)
- pow (2)
- pred (1)
-
primitive
_ convert (4) - priority (1)
- priority= (1)
-
public
_ method (1) - putc (1)
- pwrite (1)
- rand (8)
- rationalize (2)
- rdev (1)
-
rdev
_ major (1) -
rdev
_ minor (1) - readbyte (2)
- real? (1)
- remainder (1)
- rindex (4)
- round (5)
- sec (1)
- seed (1)
-
set
_ trace _ func (1) - setbyte (1)
- signo (1)
-
singleton
_ class (1) - size (11)
- size? (2)
- sleep (3)
-
sort
_ by (2) -
source
_ location (4) - spawn (4)
- sprintf (1)
- sqrt (2)
- srand (2)
- stat (2)
- step (9)
- subsec (1)
- succ (1)
- sum (5)
- syscall (1)
- sysopen (1)
- syswrite (1)
- tell (2)
- test (2)
- times (2)
-
to
_ f (2) -
to
_ i (8) -
to
_ int (3) -
to
_ r (1) -
to
_ s (1) - truncate (4)
-
tv
_ nsec (1) -
tv
_ sec (1) -
tv
_ usec (1) - uid (1)
- umask (2)
- unlink (1)
- unpack (1)
- upto (2)
- usec (1)
-
utc
_ offset (1) - utime (1)
-
values
_ at (1) - wait (1)
- wait2 (1)
- waitpid (1)
- waitpid2 (1)
- wday (1)
-
world
_ readable? (2) -
world
_ writable? (1) - write (3)
- yday (1)
- year (1)
- | (1)
- ~ (2)
検索結果
先頭5件
-
Integer
# integer? -> true (81382.0) -
常に真を返します。
常に真を返します。
//emlist[][ruby]{
1.integer? # => true
1.0.integer? # => false
//} -
Integer
. sqrt(n) -> Integer (63526.0) -
非負整数 n の整数の平方根を返します。すなわち n の平方根以下の 最大の非負整数を返します。
非負整数 n の整数の平方根を返します。すなわち n の平方根以下の
最大の非負整数を返します。
@param n 非負整数。Integer ではない場合は、最初に Integer に変換されます。
@raise Math::DomainError n が負の整数の時に発生します。
//emlist[][ruby]{
Integer.sqrt(0) # => 0
Integer.sqrt(1) # => 1
Integer.sqrt(24) # => 4
Integer.sqrt(25) # => 5
Integer.sqrt(10**... -
Integer
# div(other) -> Integer (63454.0) -
整商(整数の商)を返します。 普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。
整商(整数の商)を返します。
普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。
other が Integer オブジェクトの場合、Integer#/ の結果と一致します。
div に対応する剰余メソッドは modulo です。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[例][ruby]{
7.div(2) # => 3
7.div(-2) # => -4
7.div(2.0) # => 3
7.div(Rational(2, 1)) # => 3
begin
2.div(0)
rescue => ... -
Integer
# [](nth) -> Integer (63424.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1) と同じ
@return sel... -
Integer
# [](nth , len) -> Integer (63424.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1) と同じ
@return sel... -
Integer
# [](range) -> Integer (63424.0) -
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1 を、そうでなければ 0 を返します。
nth 番目のビット(最下位ビット(LSB)が 0 番目)が立っている時 1
を、そうでなければ 0 を返します。
@param nth 何ビット目を指すかの数値
@param len 何ビット分を返すか
@param range 返すビットの範囲
@return self[nth] は 1 か 0
@return self[i, len] は (n >> i) & ((1 << len) - 1) と同じ
@return self[i..j] は (n >> i) & ((1 << (j - i + 1)) - 1) と同じ
@return sel... -
Integer
# gcd(n) -> Integer (63418.0) -
自身と整数 n の最大公約数を返します。
自身と整数 n の最大公約数を返します。
@raise ArgumentError n に整数以外のものを指定すると発生します。
//emlist[][ruby]{
2.gcd(2) # => 2
3.gcd(7) # => 1
3.gcd(-7) # => 1
((1<<31)-1).gcd((1<<61)-1) # => 1
//}
また、self や n が 0 だった場合は、0 ではない方の整数の絶対値を返します。
//emlist[][ruby]{
3.gcd(... -
Integer
# lcm(n) -> Integer (63418.0) -
自身と整数 n の最小公倍数を返します。
自身と整数 n の最小公倍数を返します。
@raise ArgumentError n に整数以外のものを指定すると発生します。
//emlist[][ruby]{
2.lcm(2) # => 2
3.lcm(-7) # => 21
((1<<31)-1).lcm((1<<61)-1) # => 4951760154835678088235319297
//}
また、self や n が 0 だった場合は、0 を返します。
//emlist[][ruby]{
3.lcm(0) ... -
Integer
# pow(other , modulo) -> Integer (63400.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Integer
# digits -> [Integer] (63385.0) -
base を基数として self を位取り記数法で表記した数値を配列で返します。 base を指定しない場合の基数は 10 です。
base を基数として self を位取り記数法で表記した数値を配列で返します。
base を指定しない場合の基数は 10 です。
//emlist[][ruby]{
16.digits # => [6, 1]
16.digits(16) # => [0, 1]
//}
self は非負整数でなければいけません。非負整数でない場合は、Math::DomainErrorが発生します。
//emlist[][ruby]{
-10.digits # Math::DomainError: out of domain が発生
//}
@return 位取り記数法で表した時の数... -
Integer
# digits(base) -> [Integer] (63385.0) -
base を基数として self を位取り記数法で表記した数値を配列で返します。 base を指定しない場合の基数は 10 です。
base を基数として self を位取り記数法で表記した数値を配列で返します。
base を指定しない場合の基数は 10 です。
//emlist[][ruby]{
16.digits # => [6, 1]
16.digits(16) # => [0, 1]
//}
self は非負整数でなければいけません。非負整数でない場合は、Math::DomainErrorが発生します。
//emlist[][ruby]{
-10.digits # Math::DomainError: out of domain が発生
//}
@return 位取り記数法で表した時の数... -
Integer
# gcdlcm(n) -> [Integer] (63382.0) -
自身と整数 n の最大公約数と最小公倍数の配列 [self.gcd(n), self.lcm(n)] を返します。
自身と整数 n の最大公約数と最小公倍数の配列 [self.gcd(n), self.lcm(n)]
を返します。
@raise ArgumentError n に整数以外のものを指定すると発生します。
//emlist[][ruby]{
2.gcdlcm(2) # => [2, 2]
3.gcdlcm(-7) # => [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) # => [1, 4951760154835678088235319297]
//}
@see Integer#gc... -
Integer
# upto(max) {|n| . . . } -> Integer (63382.0) -
self から max まで 1 ずつ増やしながら繰り返します。 self > max であれば何もしません。
self から max まで 1 ずつ増やしながら繰り返します。
self > max であれば何もしません。
@param max 数値
@return self を返します。
//emlist[][ruby]{
5.upto(10) {|i| print i, " " } # => 5 6 7 8 9 10
//}
@see Integer#downto, Numeric#step, Integer#times -
Integer
# next -> Integer (63367.0) -
self の次の整数を返します。
self の次の整数を返します。
//emlist[][ruby]{
1.next #=> 2
(-1).next #=> 0
1.succ #=> 2
(-1).succ #=> 0
//}
@see Integer#pred -
Integer
# succ -> Integer (63367.0) -
self の次の整数を返します。
self の次の整数を返します。
//emlist[][ruby]{
1.next #=> 2
(-1).next #=> 0
1.succ #=> 2
(-1).succ #=> 0
//}
@see Integer#pred -
Integer
# bit _ length -> Integer (63364.0) -
self を表すのに必要なビット数を返します。
self を表すのに必要なビット数を返します。
「必要なビット数」とは符号ビットを除く最上位ビットの位置の事を意味しま
す。2**n の場合は n+1 になります。self にそのようなビットがない(0 や
-1 である)場合は 0 を返します。
//emlist[例: ceil(log2(int < 0 ? -int : int+1)) と同じ結果][ruby]{
(-2**12-1).bit_length # => 13
(-2**12).bit_length # => 12
(-2**12+1).bit_length # => 12
-0x101.bit... -
Integer
# denominator -> Integer (63364.0) -
分母(常に1)を返します。
分母(常に1)を返します。
@return 分母を返します。
//emlist[][ruby]{
10.denominator # => 1
-10.denominator # => 1
//}
@see Integer#numerator -
Integer
# numerator -> Integer (63364.0) -
分子(常に自身)を返します。
分子(常に自身)を返します。
@return 分子を返します。
//emlist[][ruby]{
10.numerator # => 10
-10.numerator # => -10
//}
@see Integer#denominator -
Integer
# pred -> Integer (63364.0) -
self から -1 した値を返します。
self から -1 した値を返します。
//emlist[][ruby]{
1.pred #=> 0
(-1).pred #=> -2
//}
@see Integer#next -
Integer
# size -> Integer (63364.0) -
整数の実装上のサイズをバイト数で返します。
整数の実装上のサイズをバイト数で返します。
//emlist[][ruby]{
p 1.size # => 8
p 0x1_0000_0000.size # => 8
//}
@see Integer#bit_length -
Integer
# abs -> Integer (63349.0) -
self の絶対値を返します。
self の絶対値を返します。
//emlist[][ruby]{
-12345.abs # => 12345
12345.abs # => 12345
-1234567890987654321.abs # => 1234567890987654321
//} -
Integer
# magnitude -> Integer (63349.0) -
self の絶対値を返します。
self の絶対値を返します。
//emlist[][ruby]{
-12345.abs # => 12345
12345.abs # => 12345
-1234567890987654321.abs # => 1234567890987654321
//} -
Integer
# &(other) -> Integer (63346.0) -
ビット二項演算子。論理積を計算します。
ビット二項演算子。論理積を計算します。
@param other 数値
//emlist[][ruby]{
1 & 1 # => 1
2 & 3 # => 2
//} -
Integer
# -@ -> Integer (63346.0) -
単項演算子の - です。 self の符号を反転させたものを返します。
単項演算子の - です。
self の符号を反転させたものを返します。
//emlist[][ruby]{
- 10 # => -10
- -10 # => 10
//} -
Integer
# <<(bits) -> Integer (63346.0) -
シフト演算子。bits だけビットを左にシフトします。
シフト演算子。bits だけビットを左にシフトします。
@param bits シフトさせるビット数
//emlist[][ruby]{
printf("%#b\n", 0b0101 << 1) # => 0b1010
p -1 << 1 # => -2
//} -
Integer
# >>(bits) -> Integer (63346.0) -
シフト演算子。bits だけビットを右にシフトします。
シフト演算子。bits だけビットを右にシフトします。
右シフトは、符号ビット(最上位ビット(MSB))が保持されます。
bitsが実数の場合、小数点以下を切り捨てた値でシフトします。
@param bits シフトさせるビット数
//emlist[][ruby]{
printf("%#b\n", 0b0101 >> 1) # => 0b10
p -1 >> 1 # => -1
//} -
Integer
# ^(other) -> Integer (63346.0) -
ビット二項演算子。排他的論理和を計算します。
ビット二項演算子。排他的論理和を計算します。
@param other 数値
//emlist[][ruby]{
1 ^ 1 # => 0
2 ^ 3 # => 1
//} -
Integer
# ceil(ndigits = 0) -> Integer (63346.0) -
self と等しいかより大きな整数のうち最小のものを返します。
self と等しいかより大きな整数のうち最小のものを返します。
@param ndigits 10進数での小数点以下の有効桁数を整数で指定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。
//emlist[][ruby]{
1.ceil # => 1
1.ceil(2) # => 1
18.ceil(-1) # => 20
(-18).ceil(-1) # => -10
//}
@see Numeric#ceil -
Integer
# floor(ndigits = 0) -> Integer (63346.0) -
self と等しいかより小さな整数のうち最大のものを返します。
self と等しいかより小さな整数のうち最大のものを返します。
@param ndigits 10進数での小数点以下の有効桁数を整数で指定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。
//emlist[][ruby]{
1.floor # => 1
1.floor(2) # => 1
18.floor(-1) # => 10
(-18).floor(-1) # => -20
//}
@see Numeric#floor -
Integer
# ord -> Integer (63346.0) -
自身を返します。
自身を返します。
//emlist[][ruby]{
10.ord #=> 10
# String#ord
?a.ord #=> 97
//}
@see String#ord -
Integer
# round(ndigits = 0 , half: :up) -> Integer (63346.0) -
self ともっとも近い整数を返します。
self ともっとも近い整数を返します。
@param ndigits 10進数での小数点以下の有効桁数を整数で指定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。
@param half ちょうど半分の値の丸め方を指定します。
サポートされている値は以下の通りです。
* :up or nil: 0から遠い方に丸められます。
* :even: もっとも近い偶数に丸められます。
* :down: 0に近い方に丸められます。
//emlist[][ruby]{
1.round # =... -
Integer
# truncate(ndigits = 0) -> Integer (63346.0) -
0 から self までの整数で、自身にもっとも近い整数を返します。
0 から self までの整数で、自身にもっとも近い整数を返します。
@param ndigits 10進数での小数点以下の有効桁数を整数で指定します。
負の整数を指定した場合、小数点位置から左に少なくとも n 個の 0 が並びます。
//emlist[][ruby]{
1.truncate # => 1
1.truncate(2) # => 1
18.truncate(-1) # => 10
(-18).truncate(-1) # => -10
//}
@see Numeric#truncate -
Integer
# |(other) -> Integer (63346.0) -
ビット二項演算子。論理和を計算します。
ビット二項演算子。論理和を計算します。
@param other 数値
//emlist[][ruby]{
1 | 1 # => 1
2 | 3 # => 3
//} -
Integer
# ~ -> Integer (63346.0) -
ビット演算子。否定を計算します。
ビット演算子。否定を計算します。
//emlist[][ruby]{
~1 # => -2
~3 # => -4
~-4 # => 3
//} -
Integer
# / (other) -> Numeric (63115.0) -
除算の算術演算子。
除算の算術演算子。
other が Integer の場合、整商(整数の商)を Integer で返します。
普通の商(剰余を考えない商)を越えない最大の整数をもって整商とします。
other が Float、Rational、Complex の場合、普通の商を other と
同じクラスのインスタンスで返します。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[例][ruby]{
7 / 2 # => 3
7 / -2 # => -4
7 / 2.0 # => 3.5
7 / Rational(2, 1) # => (7/2)
7... -
Integer
# **(other) -> Numeric (63100.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Integer
# pow(other) -> Numeric (63100.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Integer
# upto(max) -> Enumerator (63082.0) -
self から max まで 1 ずつ増やしながら繰り返します。 self > max であれば何もしません。
self から max まで 1 ずつ増やしながら繰り返します。
self > max であれば何もしません。
@param max 数値
@return self を返します。
//emlist[][ruby]{
5.upto(10) {|i| print i, " " } # => 5 6 7 8 9 10
//}
@see Integer#downto, Numeric#step, Integer#times -
Integer
# allbits?(mask) -> bool (63079.0) -
self & mask の全てのビットが 1 なら true を返します。
self & mask の全てのビットが 1 なら true を返します。
self & mask == mask と等価です。
@param mask ビットマスクを整数で指定します。
//emlist[][ruby]{
42.allbits?(42) # => true
0b1010_1010.allbits?(0b1000_0010) # => true
0b1010_1010.allbits?(0b1000_0001) # => false
0b1000_0010.allbits?(0b1010_1010) # => false
//}
@s... -
Integer
# anybits?(mask) -> bool (63079.0) -
self & mask のいずれかのビットが 1 なら true を返します。
self & mask のいずれかのビットが 1 なら true を返します。
self & mask != 0 と等価です。
@param mask ビットマスクを整数で指定します。
//emlist[][ruby]{
42.anybits?(42) # => true
0b1010_1010.anybits?(0b1000_0010) # => true
0b1010_1010.anybits?(0b1000_0001) # => true
0b1000_0010.anybits?(0b0010_1100) # => false
//}
@see... -
Integer
# chr -> String (63079.0) -
self を文字コードとして見た時に、引数で与えたエンコーディング encoding に対応する文字を返します。
self を文字コードとして見た時に、引数で与えたエンコーディング encoding に対応する文字を返します。
//emlist[][ruby]{
p 65.chr
# => "A"
p 12354.chr
# => `chr': 12354 out of char range (RangeError)
p 12354.chr(Encoding::UTF_8)
# => "あ"
p 12354.chr(Encoding::EUC_JP)
# => RangeError: invalid codepoint 0x3042 in EUC-JP
//}
引数無しで呼ばれた場合は self ... -
Integer
# chr(encoding) -> String (63079.0) -
self を文字コードとして見た時に、引数で与えたエンコーディング encoding に対応する文字を返します。
self を文字コードとして見た時に、引数で与えたエンコーディング encoding に対応する文字を返します。
//emlist[][ruby]{
p 65.chr
# => "A"
p 12354.chr
# => `chr': 12354 out of char range (RangeError)
p 12354.chr(Encoding::UTF_8)
# => "あ"
p 12354.chr(Encoding::EUC_JP)
# => RangeError: invalid codepoint 0x3042 in EUC-JP
//}
引数無しで呼ばれた場合は self ... -
Integer
# downto(min) -> Enumerator (63079.0) -
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。
@param min 数値
@return self を返します。
//emlist[][ruby]{
5.downto(1) {|i| print i, " " } # => 5 4 3 2 1
//}
@see Integer#upto, Numeric#step, Integer#times -
Integer
# downto(min) {|n| . . . } -> self (63079.0) -
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。
@param min 数値
@return self を返します。
//emlist[][ruby]{
5.downto(1) {|i| print i, " " } # => 5 4 3 2 1
//}
@see Integer#upto, Numeric#step, Integer#times -
Integer
# nobits?(mask) -> bool (63079.0) -
self & mask のすべてのビットが 0 なら true を返します。
self & mask のすべてのビットが 0 なら true を返します。
self & mask == 0 と等価です。
@param mask ビットマスクを整数で指定します。
//emlist[][ruby]{
42.nobits?(42) # => false
0b1010_1010.nobits?(0b1000_0010) # => false
0b1010_1010.nobits?(0b1000_0001) # => false
0b0100_0101.nobits?(0b1010_1010) # => true
//}
@see In... -
Integer
# remainder(other) -> Numeric (63079.0) -
self を other で割った余り r を返します。
self を other で割った余り r を返します。
r の符号は self と同じになります。
@param other self を割る数。
//emlist[][ruby]{
5.remainder(3) # => 2
-5.remainder(3) # => -2
5.remainder(-3) # => 2
-5.remainder(-3) # => -2
-1234567890987654321.remainder(13731) # => -6966
-1234567890987654321.remainder(13731.24) #... -
Integer
# times -> Enumerator (63079.0) -
self 回だけ繰り返します。 self が正の整数でない場合は何もしません。
self 回だけ繰り返します。
self が正の整数でない場合は何もしません。
またブロックパラメータには 0 から self - 1 までの数値が渡されます。
//emlist[][ruby]{
3.times { puts "Hello, World!" } # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" } # 何も表示されない。
5.times {|n| print n } # 01234 と表示される。
//}
@see Integer#upto, Integer#downto,... -
Integer
# times {|n| . . . } -> self (63079.0) -
self 回だけ繰り返します。 self が正の整数でない場合は何もしません。
self 回だけ繰り返します。
self が正の整数でない場合は何もしません。
またブロックパラメータには 0 から self - 1 までの数値が渡されます。
//emlist[][ruby]{
3.times { puts "Hello, World!" } # Hello, World! と3行続いて表示される。
0.times { puts "Hello, World!" } # 何も表示されない。
5.times {|n| print n } # 01234 と表示される。
//}
@see Integer#upto, Integer#downto,... -
Integer
# %(other) -> Numeric (63043.0) -
算術演算子。剰余を計算します。
算術演算子。剰余を計算します。
//emlist[][ruby]{
13 % 4 # => 1
13 % -4 # => -3
-13 % 4 # => 3
-13 % -4 # => -1
//}
@param other 二項演算の右側の引数(対象)
@return 計算結果 -
Integer
# *(other) -> Numeric (63043.0) -
算術演算子。積を計算します。
算術演算子。積を計算します。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[][ruby]{
2 * 3 # => 6
//} -
Integer
# +(other) -> Numeric (63043.0) -
算術演算子。和を計算します。
算術演算子。和を計算します。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[][ruby]{
3 + 4 # => 7
//} -
Integer
# -(other) -> Numeric (63043.0) -
算術演算子。差を計算します。
算術演算子。差を計算します。
@param other 二項演算の右側の引数(対象)
@return 計算結果
//emlist[][ruby]{
4 - 1 #=> 3
//} -
Integer
# <(other) -> bool (63043.0) -
比較演算子。数値として小さいか判定します。
比較演算子。数値として小さいか判定します。
@param other 比較対象の数値
@return self よりも other が大きい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 < 1 # => false
1 < 2 # => true
//} -
Integer
# <=(other) -> bool (63043.0) -
比較演算子。数値として等しいまたは小さいか判定します。
比較演算子。数値として等しいまたは小さいか判定します。
@param other 比較対象の数値
@return self よりも other の方が大きい場合か、
両者が等しい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true
//} -
Integer
# <=>(other) -> -1 | 0 | 1 | nil (63043.0) -
self と other を比較して、self が大きい時に1、等しい時に 0、小さい時 に-1、比較できない時に nil を返します。
self と other を比較して、self が大きい時に1、等しい時に 0、小さい時
に-1、比較できない時に nil を返します。
@param other 比較対象の数値
@return -1 か 0 か 1 か nil のいずれか
//emlist[][ruby]{
1 <=> 2 # => -1
1 <=> 1 # => 0
2 <=> 1 # => 1
2 <=> '' # => nil
//} -
Integer
# ==(other) -> bool (63043.0) -
比較演算子。数値として等しいか判定します。
比較演算子。数値として等しいか判定します。
@param other 比較対象の数値
@return self と other が等しい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 == 2 # => false
1 == 1.0 # => true
//} -
Integer
# ===(other) -> bool (63043.0) -
比較演算子。数値として等しいか判定します。
比較演算子。数値として等しいか判定します。
@param other 比較対象の数値
@return self と other が等しい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 == 2 # => false
1 == 1.0 # => true
//} -
Integer
# >(other) -> bool (63043.0) -
比較演算子。数値として大きいか判定します。
比較演算子。数値として大きいか判定します。
@param other 比較対象の数値
@return self よりも other の方が小さい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 > 0 # => true
1 > 1 # => false
//} -
Integer
# >=(other) -> bool (63043.0) -
比較演算子。数値として等しいまたは大きいか判定します。
比較演算子。数値として等しいまたは大きいか判定します。
@param other 比較対象の数値
@return self よりも other の方が小さい場合か、
両者が等しい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 >= 0 # => true
1 >= 1 # => true
1 >= 2 # => false
//} -
Integer
# even? -> bool (63043.0) -
自身が偶数であれば真を返します。 そうでない場合は偽を返します。
自身が偶数であれば真を返します。
そうでない場合は偽を返します。
//emlist[][ruby]{
10.even? # => true
5.even? # => false
//} -
Integer
# inspect(base=10) -> String (63043.0) -
整数を 10 進文字列表現に変換します。
整数を 10 進文字列表現に変換します。
引数を指定すれば、それを基数とした文字列表
現に変換します。
//emlist[][ruby]{
p 10.to_s(2) # => "1010"
p 10.to_s(8) # => "12"
p 10.to_s(16) # => "a"
p 35.to_s(36) # => "z"
//}
@return 数値の文字列表現
@param base 基数となる 2 - 36 の数値。
@raise ArgumentError base に 2 - 36 以外の数値を指定した場合に発生します。 -
Integer
# modulo(other) -> Numeric (63043.0) -
算術演算子。剰余を計算します。
算術演算子。剰余を計算します。
//emlist[][ruby]{
13 % 4 # => 1
13 % -4 # => -3
-13 % 4 # => 3
-13 % -4 # => -1
//}
@param other 二項演算の右側の引数(対象)
@return 計算結果 -
Integer
# odd? -> bool (63043.0) -
自身が奇数であれば真を返します。 そうでない場合は偽を返します。
自身が奇数であれば真を返します。
そうでない場合は偽を返します。
//emlist[][ruby]{
5.odd? # => true
10.odd? # => false
//} -
Integer
# rationalize -> Rational (63043.0) -
自身を Rational に変換します。
自身を Rational に変換します。
@param eps 許容する誤差
引数 eps は常に無視されます。
//emlist[][ruby]{
2.rationalize # => (2/1)
2.rationalize(100) # => (2/1)
2.rationalize(0.1) # => (2/1)
//} -
Integer
# rationalize(eps) -> Rational (63043.0) -
自身を Rational に変換します。
自身を Rational に変換します。
@param eps 許容する誤差
引数 eps は常に無視されます。
//emlist[][ruby]{
2.rationalize # => (2/1)
2.rationalize(100) # => (2/1)
2.rationalize(0.1) # => (2/1)
//} -
Integer
# to _ f -> Float (63043.0) -
self を浮動小数点数(Float)に変換します。
self を浮動小数点数(Float)に変換します。
self が Float の範囲に収まらない場合、Float::INFINITY を返します。
//emlist[][ruby]{
1.to_f # => 1.0
(Float::MAX.to_i * 2).to_f # => Infinity
(-Float::MAX.to_i * 2).to_f # => -Infinity
//} -
Integer
# to _ i -> self (63043.0) -
self を返します。
self を返します。
//emlist[][ruby]{
10.to_i # => 10
//} -
Integer
# to _ int -> self (63043.0) -
self を返します。
self を返します。
//emlist[][ruby]{
10.to_i # => 10
//} -
Integer
# to _ r -> Rational (63043.0) -
自身を Rational に変換します。
自身を Rational に変換します。
//emlist[][ruby]{
1.to_r # => (1/1)
(1<<64).to_r # => (18446744073709551616/1)
//} -
Integer
# to _ s(base=10) -> String (63043.0) -
整数を 10 進文字列表現に変換します。
整数を 10 進文字列表現に変換します。
引数を指定すれば、それを基数とした文字列表
現に変換します。
//emlist[][ruby]{
p 10.to_s(2) # => "1010"
p 10.to_s(8) # => "12"
p 10.to_s(16) # => "a"
p 35.to_s(36) # => "z"
//}
@return 数値の文字列表現
@param base 基数となる 2 - 36 の数値。
@raise ArgumentError base に 2 - 36 以外の数値を指定した場合に発生します。 -
Kernel
. # Integer(arg , base = 0 , exception: true) -> Integer | nil (55117.0) -
引数を整数 (Fixnum,Bignum) に変換した結果を返します。
引数を整数
(Fixnum,Bignum)
に変換した結果を返します。
引数が数値の場合は直接変換し(小数点以下切り落とし)、
文字列の場合は、進数を表す接頭辞を含む整数表現とみなせる文字列のみ
変換します。
数値と文字列以外のオブジェクトに対しては arg.to_int, arg.to_i を
この順に使用して変換します。
@param arg 変換対象のオブジェクトです。
@param base 基数として0か2から36の整数を指定します(引数argに文字列を指
定した場合のみ)。省略するか0を指定した場合はプリフィクスか
ら基数を... -
Object
:: RUBY _ PATCHLEVEL -> Integer (37168.0) -
Ruby のパッチレベルを表す Integer オブジェクトです。
Ruby のパッチレベルを表す Integer オブジェクトです。
パッチレベルはRubyの各バージョンに対するバグ修正パッチの適用をカウントしています。
teeny リリースのそれぞれについてパッチレベルは 0 から始まり、
その teeny リリースに対してバグ修正パッチが適用される度に増えていきます。
パッチレベルという概念および RUBY_PATCHLEVEL 定数は、 Ruby 1.8.5-p1 以降、 1.8.6 以降で導入されました。
1.8.5やそれ以前のバージョンでは定義されていません。 -
Numeric
# integer? -> bool (18430.0) -
自身が Integer かそのサブクラスのインスタンスの場合にtrue を返し ます。そうでない場合に false を返します。
自身が Integer かそのサブクラスのインスタンスの場合にtrue を返し
ます。そうでない場合に false を返します。
Numeric のサブクラスは、このメソッドを適切に再定義しなければなりません。
//emlist[例][ruby]{
(1.0).integer? #=> false
(1).integer? #=> true
//}
@see Numeric#real? -
RubyVM
:: AbstractSyntaxTree :: Node # first _ column -> Integer (18346.0) -
ソースコード中で、self を表すテキストが最初に現れる列番号を返します。
ソースコード中で、self を表すテキストが最初に現れる列番号を返します。
列番号は0-originで、バイト単位で表されます。
//emlist[][ruby]{
node = RubyVM::AbstractSyntaxTree.parse('1 + 2')
p node.first_column # => 0
//} -
RubyVM
:: AbstractSyntaxTree :: Node # first _ lineno -> Integer (18346.0) -
ソースコード中で、self を表すテキストが最初に現れる行番号を返します。
ソースコード中で、self を表すテキストが最初に現れる行番号を返します。
行番号は1-originです。
//emlist[][ruby]{
node = RubyVM::AbstractSyntaxTree.parse('1 + 2')
p node.first_lineno # => 1
//} -
RubyVM
:: AbstractSyntaxTree :: Node # last _ column -> Integer (18346.0) -
ソースコード中で、self を表すテキストが最後に現れる列番号を返します。
ソースコード中で、self を表すテキストが最後に現れる列番号を返します。
列番号は0-originで、バイト単位で表されます。
//emlist[][ruby]{
node = RubyVM::AbstractSyntaxTree.parse('1 + 1')
p node.last_column # => 5
//} -
RubyVM
:: AbstractSyntaxTree :: Node # last _ lineno -> Integer (18346.0) -
ソースコード中で、self を表すテキストが最後に現れる行番号を返します。
ソースコード中で、self を表すテキストが最後に現れる行番号を返します。
行番号は1-originです。
//emlist[][ruby]{
node = RubyVM::AbstractSyntaxTree.parse('1 + 1')
p node.last_lineno # => 1
//} -
RubyVM
:: DEFAULT _ PARAMS -> {Symbol => Integer} (18346.0) -
RubyVM のデフォルトのパラメータを返します。
RubyVM のデフォルトのパラメータを返します。
[注意] この値は C Ruby 固有のものです。変更しても RubyVM の動作に
は影響しません。また、仕様は変更される場合があるため、この値に依存すべ
きではありません。 -
RubyVM
:: InstructionSequence # first _ lineno -> Integer (18310.0) -
self が表す命令シーケンスの 1 行目の行番号を返します。
self が表す命令シーケンスの 1 行目の行番号を返します。
例1:irb で実行した場合
RubyVM::InstructionSequence.compile('num = 1 + 2').first_lineno
# => 1
例2:
# /tmp/method.rb
require "foo-library"
def foo
p :foo
end
RubyVM::InstructionSequence.of(method(:foo)).first_lineno
# => 2 -
Array
# pack(template) -> String (3643.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
...# NaN
[1.0/0.0].pack("f") # => "\x7F\x80\x00\x00" # +Infinity
[-1.0/0.0].pack("f") # => "\xFF\x80\x00\x00" # -Infinity
//}
VAX (NetBSD 3.0) (非IEEE754):
//emlist[][ruby]{
[1.0].pack("f") # => "\x80@\x00\x00"
//}
: d
倍精度浮動小数点数(機種依存)
x86_64 (IEEE754 倍......"\x7F\xF0\x00\x00\x00\x00\x00\x00" # +Infinity
[-1.0/0.0].pack("d") # => "\xFF\xF0\x00\x00\x00\x00\x00\x00" # -Infinity
//}
VAX (NetBSD 3.0) (非IEEE754):
//emlist[][ruby]{
[1.0].pack("d") # => "\x80@\x00\x00\x00\x00\x00\x00"
//}
: e
リトルエンディアンの単精度浮動小... -
Array
# pack(template , buffer: String . new) -> String (3643.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
...# NaN
[1.0/0.0].pack("f") # => "\x7F\x80\x00\x00" # +Infinity
[-1.0/0.0].pack("f") # => "\xFF\x80\x00\x00" # -Infinity
//}
VAX (NetBSD 3.0) (非IEEE754):
//emlist[][ruby]{
[1.0].pack("f") # => "\x80@\x00\x00"
//}
: d
倍精度浮動小数点数(機種依存)
x86_64 (IEEE754 倍......"\x7F\xF0\x00\x00\x00\x00\x00\x00" # +Infinity
[-1.0/0.0].pack("d") # => "\xFF\xF0\x00\x00\x00\x00\x00\x00" # -Infinity
//}
VAX (NetBSD 3.0) (非IEEE754):
//emlist[][ruby]{
[1.0].pack("d") # => "\x80@\x00\x00\x00\x00\x00\x00"
//}
: e
リトルエンディアンの単精度浮動小... -
String
# unpack(template) -> Array (3607.0) -
Array#pack で生成された文字列を テンプレート文字列 template にしたがってアンパックし、 それらの要素を含む配列を返します。
...# NaN
[1.0/0.0].pack("f") # => "\x7F\x80\x00\x00" # +Infinity
[-1.0/0.0].pack("f") # => "\xFF\x80\x00\x00" # -Infinity
//}
VAX (NetBSD 3.0) (非IEEE754):
//emlist[][ruby]{
[1.0].pack("f") # => "\x80@\x00\x00"
//}
: d
倍精度浮動小数点数(機種依存)
x86_64 (IEEE754 倍......"\x7F\xF0\x00\x00\x00\x00\x00\x00" # +Infinity
[-1.0/0.0].pack("d") # => "\xFF\xF0\x00\x00\x00\x00\x00\x00" # -Infinity
//}
VAX (NetBSD 3.0) (非IEEE754):
//emlist[][ruby]{
[1.0].pack("d") # => "\x80@\x00\x00\x00\x00\x00\x00"
//}
: e
リトルエンディアンの単精度浮動小... -
String
# %(args) -> String (1249.0) -
printf と同じ規則に従って args をフォーマットします。
printf と同じ規則に従って args をフォーマットします。
args が配列であれば Kernel.#sprintf(self, *args) と同じです。
それ以外の場合は Kernel.#sprintf(self, args) と同じです。
@param args フォーマットする値、もしくはその配列
@return フォーマットされた文字列
//emlist[例][ruby]{
p "i = %d" % 10 # => "i = 10"
p "i = %x" % 10 # => "i = a"
p "i = %o" % 10... -
Kernel
. # format(format , *arg) -> String (1213.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
format 文字列を C 言語の sprintf と同じように解釈し、
引数をフォーマットした文字列を返します。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、s... -
Kernel
. # sprintf(format , *arg) -> String (1213.0) -
format 文字列を C 言語の sprintf と同じように解釈し、 引数をフォーマットした文字列を返します。
format 文字列を C 言語の sprintf と同じように解釈し、
引数をフォーマットした文字列を返します。
@param format フォーマット文字列です。
@param arg フォーマットされる引数です。
@see Kernel.#printf,Time#strftime,Date.strptime
=== sprintf フォーマット
Ruby の sprintf フォーマットは基本的に C 言語の sprintf(3)
のものと同じです。ただし、short や long などの C 特有の型に対する修飾子が
ないこと、2進数の指示子(%b, %B)が存在すること、s... -
Kernel
. # spawn(env , program , *args , options={}) -> Integer (937.0) -
引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
引数を外部コマンドとして実行しますが、生成した
子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
env に Hash を渡すことで、exec(2) で子プロセス内で
ファイルを実行する前に環境変数を変更することができます。
Hash のキーは環境変数名文字列、Hash の値に設定する値とします。
nil とすることで環境変数が削除(unsetenv(3))されます。
//emlist[例][ruby]{
# FOO を BAR にして BAZ を削除する
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
//... -
Kernel
. # spawn(program , *args) -> Integer (937.0) -
引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
引数を外部コマンドとして実行しますが、生成した
子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
env に Hash を渡すことで、exec(2) で子プロセス内で
ファイルを実行する前に環境変数を変更することができます。
Hash のキーは環境変数名文字列、Hash の値に設定する値とします。
nil とすることで環境変数が削除(unsetenv(3))されます。
//emlist[例][ruby]{
# FOO を BAR にして BAZ を削除する
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
//... -
MatchData
# offset(name) -> [Integer , Integer] | [nil , nil] (697.0) -
name という名前付きグループに対応する部分文字列のオフセットの配列 [start, end] を返 します。
name という名前付きグループに対応する部分文字列のオフセットの配列 [start, end] を返
します。
//emlist[例][ruby]{
[ self.begin(name), self.end(name) ]
//}
と同じです。nameの名前付きグループにマッチした部分文字列がなければ
[nil, nil] を返します。
@param name 名前(シンボルか文字列)
@raise IndexError 正規表現中で定義されていない name を指定した場合に発生します。
//emlist[例][ruby]{
/(?<year>\d{4})年(?<month>\... -
MatchData
# offset(n) -> [Integer , Integer] | [nil , nil] (667.0) -
n 番目の部分文字列のオフセットの配列 [start, end] を返 します。
n 番目の部分文字列のオフセットの配列 [start, end] を返
します。
//emlist[例][ruby]{
[ self.begin(n), self.end(n) ]
//}
と同じです。n番目の部分文字列がマッチしていなければ
[nil, nil] を返します。
@param n 部分文字列を指定する数値
@raise IndexError 範囲外の n を指定した場合に発生します。
@see MatchData#begin, MatchData#end -
Object
# hash -> Integer (544.0) -
オブジェクトのハッシュ値を返します。このハッシュ値は、Object#eql? と合わせて Hash クラスで、2つのオブジェクトを同一のキーとするか判定するために用いられます。
オブジェクトのハッシュ値を返します。このハッシュ値は、Object#eql? と合わせて Hash クラスで、2つのオブジェクトを同一のキーとするか判定するために用いられます。
2つのオブジェクトのハッシュ値が異なるとき、直ちに異なるキーとして判定されます。
逆に、2つのハッシュ値が同じとき、さらに Object#eql? での比較により判定されます。
そのため、同じキーとして判定される状況は Object#eql? の比較で真となる場合のみであり、このとき前段階としてハッシュ値どうしが等しい必要があります。
つまり、
A.eql?(B) ならば A.hash == B.hash
... -
Object
# object _ id -> Integer (544.0) -
各オブジェクトに対して一意な整数を返します。あるオブジェクトに対し てどのような整数が割り当てられるかは不定です。
各オブジェクトに対して一意な整数を返します。あるオブジェクトに対し
てどのような整数が割り当てられるかは不定です。
Rubyでは、(Garbage Collectされていない)アクティブなオブジェクト間で
重複しない整数(object_id)が各オブジェクトにひとつずつ割り当てられています。この
メソッドはその値を返します。
TrueClass, FalseClass, NilClass, Symbol, Integer クラス
のインスタンスなど Immutable(変更不可)なオブジェクトの一部は同じ内容ならば必ず同じ object_id になります。
これは、Immutable ... -
String
# to _ i(base = 10) -> Integer (490.0) -
文字列を 10 進数表現された整数であると解釈して、整数に変換します。
文字列を 10 進数表現された整数であると解釈して、整数に変換します。
//emlist[例][ruby]{
p " 10".to_i # => 10
p "+10".to_i # => 10
p "-10".to_i # => -10
p "010".to_i # => 10
p "-010".to_i # => -10
//}
整数とみなせない文字があればそこまでを変換対象とします。
変換対象が空文字列であれば 0 を返します。
//emlist[例][ruby]{
p "0x11".to_i # => 0
p "".to_i # =>... -
Numeric (469.0)
-
数値を表す抽象クラスです。Integer や Float などの数値クラス は Numeric のサブクラスとして実装されています。
数値を表す抽象クラスです。Integer や Float などの数値クラス
は Numeric のサブクラスとして実装されています。
演算や比較を行うメソッド(+, -, *, /, <=>)は Numeric のサブクラスで定義されま
す。Numeric で定義されているメソッドは、サブクラスで提供されているメソッド
(+, -, *, /, %) を利用して定義されるものがほとんどです。
つまり Numeric で定義されているメソッドは、Numeric のサブクラスとして新たに数値クラスを定義した時に、
演算メソッド(+, -, *, /, %, <=>, coerce)だけを定義すれ... -
Kernel
. # spawn(command , options={}) -> Integer (457.0) -
引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
引数を外部コマンドとして実行しますが、生成した
子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
=== 引数の解釈
この形式では command が shell のメタ文字
//emlist{
* ? {} [] <> () ~ & | \ $ ; ' ` " \n
//}
を含む場合、shell 経由で実行されます。
そうでなければインタプリタから直接実行されます。
@param command コマンドを文字列で指定します。
@param env 更新する環境変数を表す Hash
@param options オプションパラメータ Hash... -
Kernel
. # spawn(env , command , options={}) -> Integer (457.0) -
引数を外部コマンドとして実行しますが、生成した 子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
引数を外部コマンドとして実行しますが、生成した
子プロセスの終了を待ち合わせません。生成した子プロセスのプロセスIDを返します。
=== 引数の解釈
この形式では command が shell のメタ文字
//emlist{
* ? {} [] <> () ~ & | \ $ ; ' ` " \n
//}
を含む場合、shell 経由で実行されます。
そうでなければインタプリタから直接実行されます。
@param command コマンドを文字列で指定します。
@param env 更新する環境変数を表す Hash
@param options オプションパラメータ Hash... -
String
# oct -> Integer (454.0) -
文字列を 8 進文字列であると解釈して、整数に変換します。
文字列を 8 進文字列であると解釈して、整数に変換します。
//emlist[例][ruby]{
p "10".oct # => 8
p "010".oct # => 8
p "8".oct # => 0
//}
oct は文字列の接頭辞 ("0", "0b", "0B", "0x", "0X") に応じて
8 進以外の変換も行います。
//emlist[例][ruby]{
p "0b10".oct # => 2
p "10".oct # => 8
p "010".oct # => 8
p "0x10".oct # => 16
//}
整数とみなせない文字があれば... -
Binding
# source _ location -> [String , Integer] (442.0) -
self の Ruby のソースファイル名と行番号を返します。
self の Ruby のソースファイル名と行番号を返します。
d:spec/variables#pseudo の __FILE__ と __LINE__ も参照してください。
//emlist[例][ruby]{
p binding.source_location # => ["test.rb", 1]
//} -
ObjectSpace
. # each _ object {|object| . . . } -> Integer (421.0) -
指定された klass と Object#kind_of? の関係にある全ての オブジェクトに対して繰り返します。引数が省略された時には全てのオブ ジェクトに対して繰り返します。 繰り返した数を返します。
指定された klass と Object#kind_of? の関係にある全ての
オブジェクトに対して繰り返します。引数が省略された時には全てのオブ
ジェクトに対して繰り返します。
繰り返した数を返します。
ブロックが与えられなかった場合は、
Enumerator オブジェクトを返します。
次のクラスのオブジェクトについては繰り返しません
* Fixnum
* Symbol
* TrueClass
* FalseClass
* NilClass
とくに、klass に Fixnum や Symbol などのクラスを指定した場合は、
何も繰り返さないことになります。
なお、Sy... -
ObjectSpace
. # each _ object(klass) {|object| . . . } -> Integer (421.0) -
指定された klass と Object#kind_of? の関係にある全ての オブジェクトに対して繰り返します。引数が省略された時には全てのオブ ジェクトに対して繰り返します。 繰り返した数を返します。
指定された klass と Object#kind_of? の関係にある全ての
オブジェクトに対して繰り返します。引数が省略された時には全てのオブ
ジェクトに対して繰り返します。
繰り返した数を返します。
ブロックが与えられなかった場合は、
Enumerator オブジェクトを返します。
次のクラスのオブジェクトについては繰り返しません
* Fixnum
* Symbol
* TrueClass
* FalseClass
* NilClass
とくに、klass に Fixnum や Symbol などのクラスを指定した場合は、
何も繰り返さないことになります。
なお、Sy... -
Rational
# floor(precision = 0) -> Integer | Rational (418.0) -
自身と等しいかより小さな整数のうち最大のものを返します。
自身と等しいかより小さな整数のうち最大のものを返します。
@param precision 計算結果の精度
@raise TypeError precision に整数以外のものを指定すると発生します。
//emlist[例][ruby]{
Rational(3).floor # => 3
Rational(2, 3).floor # => 0
Rational(-3, 2).floor # => -2
//}
Rational#to_i とは違う結果を返す事に注意してください。
//emlist[例][ruby]{
Rational(+7, 4).to_i # => ...