別のキーワード
クラス
- Array (22)
- BasicObject (5)
- Class (3)
- Complex (1)
-
Encoding
:: Converter (2) -
Enumerator
:: Lazy (7) -
Enumerator
:: Yielder (1) - Exception (2)
-
File
:: Stat (1) - Float (4)
- Hash (14)
- Integer (7)
- Method (4)
- Module (14)
- Numeric (6)
- Object (11)
- Proc (5)
- Range (14)
- Rational (1)
-
RubyVM
:: InstructionSequence (7) - Set (3)
- String (13)
- Symbol (1)
- Thread (2)
-
Thread
:: Backtrace :: Location (1) - Time (1)
- TracePoint (1)
- UnboundMethod (1)
モジュール
- Comparable (2)
- Enumerable (17)
キーワード
- ! (1)
- != (1)
- % (1)
- << (7)
- <= (5)
- <=> (12)
- == (1)
- === (2)
- [] (1)
-
absolute
_ path (1) - add (1)
- add? (1)
- ancestors (1)
-
backtrace
_ locations (3) -
base
_ label (2) - bind (1)
-
bit
_ length (1) - bsearch (4)
-
bsearch
_ index (2) - call (1)
-
chunk
_ while (1) -
class
_ variables (1) - concat (2)
-
const
_ source _ location (1) - cover? (2)
-
delete
_ if (2) - disasm (1)
- disassemble (1)
- div (1)
- divmod (2)
- downto (2)
-
drop
_ while (5) -
enum
_ for (4) - filter (2)
- include (1)
- include? (1)
- inherited (1)
- initialize (1)
-
insert
_ output (1) - inspect (1)
-
instance
_ eval (2) -
instance
_ methods (1) -
instance
_ of? (1) -
instruction
_ sequence (1) -
is
_ a? (1) -
kind
_ of? (1) - label (1)
- lazy (1)
- max (12)
-
method
_ defined? (1) - methods (1)
- min (12)
- minmax (2)
- modulo (1)
- pack (2)
- path (1)
-
private
_ method _ defined? (1) -
protected
_ method _ defined? (1) -
public
_ method _ defined? (1) - reject (2)
- reject! (2)
- remainder (1)
- replacement= (1)
- scrub (3)
- scrub! (3)
- select (2)
-
set
_ backtrace (1) -
slice
_ when (1) - sort (2)
- split (2)
- subclasses (1)
-
super
_ method (1) - superclass (1)
-
take
_ while (6) -
to
_ a (1) -
to
_ ary (1) -
to
_ binary (1) -
to
_ enum (4) -
to
_ h (2) -
to
_ s (1) -
undef
_ method (1) - unpack (1)
- yield (1)
検索結果
先頭5件
-
Module
# <(other) -> bool | nil (54436.0) -
比較演算子。self が other の子孫である場合、 true を返します。 self が other の先祖か同一のクラス/モジュールである場合、false を返します。
比較演算子。self が other の子孫である場合、 true を返します。
self が other の先祖か同一のクラス/モジュールである場合、false を返します。
継承関係にないクラス同士の比較では
nil を返します。
@param other 比較対象のモジュールやクラス
@raise TypeError other がクラスやモジュールではない場合に発生します。
//emlist[例][ruby]{
module Foo
end
class Bar
include Foo
end
class Baz < Bar
end
class Qux
end
p Bar ... -
Hash
# <(other) -> bool (54382.0) -
self が other のサブセットである場合に真を返します。
self が other のサブセットである場合に真を返します。
@param other 自身と比較したい Hash オブジェクトを指定します。
//emlist[例][ruby]{
h1 = {a:1, b:2}
h2 = {a:1, b:2, c:3}
h1 < h2 # => true
h2 < h1 # => false
h1 < h1 # => false
//}
@see Hash#<=, Hash#>=, Hash#> -
Comparable
# <(other) -> bool (54364.0) -
比較演算子 <=> をもとにオブジェクト同士を比較します。 <=> が負の整数を返した場合に、true を返します。 それ以外の整数を返した場合に、false を返します。
比較演算子 <=> をもとにオブジェクト同士を比較します。
<=> が負の整数を返した場合に、true を返します。
それ以外の整数を返した場合に、false を返します。
@param other 自身と比較したいオブジェクトを指定します。
@raise ArgumentError <=> が nil を返したときに発生します。
//emlist[例][ruby]{
1 < 1 # => false
1 < 2 # => true
//} -
Integer
# <(other) -> bool (54364.0) -
比較演算子。数値として小さいか判定します。
比較演算子。数値として小さいか判定します。
@param other 比較対象の数値
@return self よりも other が大きい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 < 1 # => false
1 < 2 # => true
//} -
Float
# <(other) -> bool (54346.0) -
比較演算子。数値として小さいか判定します。
比較演算子。数値として小さいか判定します。
@param other 比較対象の数値
@return self よりも other が大きい場合 true を返します。
そうでなければ false を返します。
//emlist[例][ruby]{
3.14 < 3.1415 # => true
3.14 <= 3.1415 # => true
//} -
Method
# <<(callable) -> Proc (18382.0) -
self と引数を合成した Proc を返します。
self と引数を合成した Proc を返します。
戻り値の Proc は可変長の引数を受け取ります。
戻り値の Proc を呼び出すと、まず受け取った引数を callable に渡して呼び出し、
その戻り値を self に渡して呼び出した結果を返します。
Method#>> とは呼び出しの順序が逆になります。
@param callable Proc、Method、もしくは任意の call メソッドを持ったオブジェクト。
//emlist[例][ruby]{
def f(x)
x * x
end
def g(x)
x + x
end
# (3 + 3) * (3 + 3... -
Proc
# <<(callable) -> Proc (18364.0) -
self と引数を合成した Proc を返します。
self と引数を合成した Proc を返します。
戻り値の Proc は可変長の引数を受け取ります。
戻り値の Proc を呼び出すと、まず受け取った引数を callable に渡して呼び出し、
その戻り値を self に渡して呼び出した結果を返します。
Proc#>> とは呼び出しの順序が逆になります。
@param callable Proc、Method、もしくは任意の call メソッドを持ったオブジェクト。
//emlist[例][ruby]{
f = proc { |x| x * x }
g = proc { |x| x + x }
# (3 + 3) * (3 + ... -
Array
# <<(obj) -> self (18346.0) -
指定された obj を自身の末尾に破壊的に追加します。
指定された obj を自身の末尾に破壊的に追加します。
//emlist[例][ruby]{
ary = [1]
ary << 2
p ary # [1, 2]
//}
またこのメソッドは self を返すので、以下のように連続して
書くことができます。
//emlist[例][ruby]{
ary = [1]
ary << 2 << 3 << 4
p ary #=> [1, 2, 3, 4]
//}
@param obj 自身に加えたいオブジェクトを指定します。Array#push と違って引数は一つしか指定できません。
@see Array#push -
Float
# <=(other) -> bool (18346.0) -
比較演算子。数値として等しいまたは小さいか判定します。
比較演算子。数値として等しいまたは小さいか判定します。
@param other 比較対象の数値
@return self よりも other の方が大きい場合か、
両者が等しい場合 true を返します。
そうでなければ false を返します。
//emlist[例][ruby]{
3.14 < 3.1415 # => true
3.14 <= 3.1415 # => true
//} -
Module
# <=>(other) -> Integer | nil (18346.0) -
self と other の継承関係を比較します。
self と other の継承関係を比較します。
self と other を比較して、
self が other の子孫であるとき -1、
同一のクラス/モジュールのとき 0、
self が other の先祖であるとき 1
を返します。
継承関係にないクラス同士の比較では
nil を返します。
other がクラスやモジュールでなければ
nil を返します。
@param other 比較対象のクラスやモジュール
//emlist[例][ruby]{
module Foo
end
class Bar
include Foo
end
class Baz < Bar
end
... -
Time
# <=>(other) -> -1 | 0 | 1 | nil (18346.0) -
self と other の時刻を比較します。self の方が大きい場合は 1 を、等しい場合は 0 を、 小さい場合は -1 を返します。比較できない場合は、nil を返します。
self と other の時刻を比較します。self の方が大きい場合は 1 を、等しい場合は 0 を、
小さい場合は -1 を返します。比較できない場合は、nil を返します。
@param other 自身と比較したい時刻を Time オブジェクトで指定します。
//emlist[][ruby]{
p t = Time.local(2000) # => 2000-01-01 00:00:00 +0900
p t2 = t + 2592000 # => 2000-01-31 00:00:00 +0900
p t <=> t2 # => -1
p ... -
String
# <<(other) -> self (18331.0) -
self に文字列 other を破壊的に連結します。 other が 整数である場合は other.chr(self.encoding) 相当の文字を末尾に追加します。
self に文字列 other を破壊的に連結します。
other が 整数である場合は other.chr(self.encoding) 相当の文字を末尾に追加します。
self を返します。
@param other 文字列もしくは 0 以上の整数
//emlist[例][ruby]{
str = "string"
str.concat "XXX"
p str # => "stringXXX"
str << "YYY"
p str # => "stringXXXYYY"
str << 65 # 文字AのASCIIコード
p str # => "stri... -
Array
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
自身と other の各要素をそれぞれ順に <=> で比較していき、結果が 0 でなかった場合に その値を返します。各要素が等しく、配列の長さも等しい場合には 0 を返します。 各要素が等しいまま一方だけ配列の末尾に達した時、自身の方が短ければ -1 をそうでなければ 1 を返します。 other に配列以外のオブジェクトを指定した場合は nil を返します。
自身と other の各要素をそれぞれ順に <=> で比較していき、結果が 0 でなかった場合に
その値を返します。各要素が等しく、配列の長さも等しい場合には 0 を返します。
各要素が等しいまま一方だけ配列の末尾に達した時、自身の方が短ければ -1 をそうでなければ 1
を返します。
other に配列以外のオブジェクトを指定した場合は nil を返します。
@param other 自身と比較したい配列を指定します。
配列以外のオブジェクトを指定した場合は to_ary メソッドによ
る暗黙の型変換を試みます。
//emlist[... -
Comparable
# <=(other) -> bool (18328.0) -
比較演算子 <=> をもとにオブジェクト同士を比較します。 <=> が負の整数か 0 を返した場合に、true を返します。 それ以外の整数を返した場合に、false を返します。
比較演算子 <=> をもとにオブジェクト同士を比較します。
<=> が負の整数か 0 を返した場合に、true を返します。
それ以外の整数を返した場合に、false を返します。
@param other 自身と比較したいオブジェクトを指定します。
@raise ArgumentError <=> が nil を返したときに発生します。
//emlist[例][ruby]{
1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true
//} -
Complex
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
self の虚部がゼロで other が実数の場合、 self の実部の <=> メソッドで other と比較した結果を返します。 other が Complex で虚部がゼロの場合も同様です。
self の虚部がゼロで other が実数の場合、
self の実部の <=> メソッドで other と比較した結果を返します。
other が Complex で虚部がゼロの場合も同様です。
その他の場合は nil を返します。
@param other 自身と比較する数値
//emlist[例][ruby]{
Complex(2, 3) <=> Complex(2, 3) #=> nil
Complex(2, 3) <=> 1 #=> nil
Complex(2) <=> 1 #=> 1
Complex(2) ... -
Enumerator
:: Yielder # <<(object) -> () (18328.0) -
Enumerator.new で使うメソッドです。
Enumerator.new で使うメソッドです。
生成された Enumerator オブジェクトの each メソッドを呼ぶと
Enumerator::Yielder オブジェクトが渡されたブロックが実行され、
ブロック内の << が呼ばれるたびに each に渡されたブロックが
<< に渡された値とともに繰り返されます。
//emlist[例][ruby]{
enum = Enumerator.new do |y|
y << 1
y << 2
y << 3
end
enum.each do |v|
p v
end
# => 1
# 2
# 3
//} -
File
:: Stat # <=>(o) -> Integer | nil (18328.0) -
ファイルの最終更新時刻を比較します。self が other よりも 新しければ正の数を、等しければ 0 を古ければ負の数を返します。 比較できない場合は nil を返します。
ファイルの最終更新時刻を比較します。self が other よりも
新しければ正の数を、等しければ 0 を古ければ負の数を返します。
比較できない場合は nil を返します。
@param o File::Stat のインスタンスを指定します。
//emlist[][ruby]{
require 'tempfile' # for Tempfile
fp1 = Tempfile.open("first")
fp1.print "古い方\n"
sleep(1)
fp2 = Tempfile.open("second")
fp2.print "新しい方\n"
p File::Stat.n... -
Float
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
self と other を比較して、self が大きい時に正、 等しい時に 0、小さい時に負の整数を返します。 比較できない場合はnilを返します
self と other を比較して、self が大きい時に正、
等しい時に 0、小さい時に負の整数を返します。
比較できない場合はnilを返します
//emlist[例][ruby]{
3.05 <=> 3.14 # => -1
1.732 <=> 1.414 # => 1
3.3 - 3.3 <=> 0.0 # => 0
3.14 <=> "hoge" # => nil
3.14 <=> 0.0/0.0 # => nil
//} -
Hash
# <=(other) -> bool (18328.0) -
self が other のサブセットか同じである場合に真を返します。
self が other のサブセットか同じである場合に真を返します。
@param other 自身と比較したい Hash オブジェクトを指定します。
//emlist[例][ruby]{
h1 = {a:1, b:2}
h2 = {a:1, b:2, c:3}
h1 <= h2 # => true
h2 <= h1 # => false
h1 <= h1 # => true
//}
@see Hash#<, Hash#>=, Hash#> -
Integer
# <<(bits) -> Integer (18328.0) -
シフト演算子。bits だけビットを左にシフトします。
シフト演算子。bits だけビットを左にシフトします。
@param bits シフトさせるビット数
//emlist[][ruby]{
printf("%#b\n", 0b0101 << 1) # => 0b1010
p -1 << 1 # => -2
//} -
Integer
# <=(other) -> bool (18328.0) -
比較演算子。数値として等しいまたは小さいか判定します。
比較演算子。数値として等しいまたは小さいか判定します。
@param other 比較対象の数値
@return self よりも other の方が大きい場合か、
両者が等しい場合 true を返します。
そうでなければ false を返します。
//emlist[][ruby]{
1 <= 0 # => false
1 <= 1 # => true
1 <= 2 # => true
//} -
Integer
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
self と other を比較して、self が大きい時に1、等しい時に 0、小さい時 に-1、比較できない時に nil を返します。
self と other を比較して、self が大きい時に1、等しい時に 0、小さい時
に-1、比較できない時に nil を返します。
@param other 比較対象の数値
@return -1 か 0 か 1 か nil のいずれか
//emlist[][ruby]{
1 <=> 2 # => -1
1 <=> 1 # => 0
2 <=> 1 # => 1
2 <=> '' # => nil
//} -
Module
# <=(other) -> bool | nil (18328.0) -
比較演算子。self が other の子孫であるか、self と other が 同一クラスである場合、 true を返します。 self が other の先祖である場合、false を返します。
比較演算子。self が other の子孫であるか、self と other が
同一クラスである場合、 true を返します。
self が other の先祖である場合、false を返します。
継承関係にないクラス同士の比較では
nil を返します。
@param other 比較対象のモジュールやクラス
@raise TypeError other がクラスやモジュールではない場合に発生します。
@see Module#<
//emlist[例][ruby]{
module Foo; end
module Bar
include Foo
end
module Baz
... -
Numeric
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
自身が other より大きい場合に 1 を、等しい場合に 0 を、小さい場合には -1 をそれぞれ返します。 自身と other が比較できない場合には nil を返します。
自身が other より大きい場合に 1 を、等しい場合に 0 を、小さい場合には -1 をそれぞれ返します。
自身と other が比較できない場合には nil を返します。
Numeric のサブクラスは、上の動作を満たすよう このメソッドを適切に再定義しなければなりません。
@param other 自身と比較したい数値を指定します。
//emlist[例][ruby]{
1 <=> 0 #=> 1
1 <=> 1 #=> 0
1 <=> 2 #=> -1
1 <=> "0" #=> nil
//} -
Object
# <=>(other) -> 0 | nil (18328.0) -
self === other である場合に 0 を返します。そうでない場合には nil を返します。
self === other である場合に 0 を返します。そうでない場合には nil を返します。
//emlist[例][ruby]{
a = Object.new
b = Object.new
a <=> a # => 0
a <=> b # => nil
//}
@see Object#=== -
Rational
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
self と other を比較して、self が大きい時に 1、等しい時に 0、小さい時に -1 を返します。比較できない場合はnilを返します。
self と other を比較して、self が大きい時に 1、等しい時に 0、小さい時に
-1 を返します。比較できない場合はnilを返します。
@param other 自身と比較する数値
@return -1 か 0 か 1 か nil を返します。
//emlist[例][ruby]{
Rational(2, 3) <=> Rational(2, 3) # => 0
Rational(5) <=> 5 # => 0
Rational(2, 3) <=> Rational(1,3) # => 1
Rational(1, 3... -
Set
# <<(o) -> self (18328.0) -
集合にオブジェクト o を加えます。
集合にオブジェクト o を加えます。
add は常に self を返します。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//} -
String
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
self と other を ASCII コード順で比較して、 self が大きい時には 1、等しい時には 0、小さい時には -1 を返します。 このメソッドは Comparable モジュールのメソッドを実装するために使われます。
self と other を ASCII コード順で比較して、
self が大きい時には 1、等しい時には 0、小さい時には -1 を返します。
このメソッドは Comparable モジュールのメソッドを実装するために使われます。
other が文字列でない場合、
other.to_str と other.<=> が定義されていれば
0 - (other <=> self) の結果を返します。
そうでなければ nil を返します。
@param other 文字列
@return 比較結果の整数か nil
//emlist[例][ruby]{
p "aaa" <... -
Symbol
# <=>(other) -> -1 | 0 | 1 | nil (18328.0) -
self と other のシンボルに対応する文字列を ASCII コード順で比較して、 self が小さい時には -1、等しい時には 0、大きい時には 1 を返します。
self と other のシンボルに対応する文字列を ASCII コード順で比較して、
self が小さい時には -1、等しい時には 0、大きい時には 1 を返します。
other がシンボルではなく比較できない時には nil を返します。
@param other 比較対象のシンボルを指定します。
//emlist[][ruby]{
p :aaa <=> :xxx # => -1
p :aaa <=> :aaa # => 0
p :xxx <=> :aaa # => 1
p :foo <=> "foo" # => nil
//}
@see String#<=>, Symbo... -
RubyVM
:: InstructionSequence # to _ binary(extra _ data = nil) -> String (9064.0) -
バイナリフォーマットでシリアライズされたiseqのデータを文字列として返します。 RubyVM::InstructionSequence.load_from_binary メソッドでバイナリデータに対応するiseqオブジェクトを作れます。
バイナリフォーマットでシリアライズされたiseqのデータを文字列として返します。
RubyVM::InstructionSequence.load_from_binary メソッドでバイナリデータに対応するiseqオブジェクトを作れます。
引数の extra_data はバイナリデータと共に保存されます。
RubyVM::InstructionSequence.load_from_binary_extra_data メソッドでこの文字列にアクセス出来ます。
注意: 変換後のバイナリデータはポータブルではありません。 to_binary で得たバイナリデータは他のマシンに移動できません。他... -
RubyVM
:: InstructionSequence # disasm -> String (9046.0) -
self が表す命令シーケンスを人間が読める形式の文字列に変換して返します。
self が表す命令シーケンスを人間が読める形式の文字列に変換して返します。
puts RubyVM::InstructionSequence.compile('1 + 2').disasm
出力:
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
0000 trace 1 ( 1)
0002 putobject 1
0004 putobje... -
RubyVM
:: InstructionSequence # disassemble -> String (9046.0) -
self が表す命令シーケンスを人間が読める形式の文字列に変換して返します。
self が表す命令シーケンスを人間が読める形式の文字列に変換して返します。
puts RubyVM::InstructionSequence.compile('1 + 2').disasm
出力:
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
0000 trace 1 ( 1)
0002 putobject 1
0004 putobje... -
String
# concat(*arguments) -> self (9031.0) -
self に複数の文字列を破壊的に連結します。
self に複数の文字列を破壊的に連結します。
引数の値が整数である場合は Integer#chr の結果に相当する文字を末尾に追加します。追加する文字のエンコーディングは self.encoding です。
self を返します。
@param arguments 複数の文字列もしくは 0 以上の整数
//emlist[例][ruby]{
str = "foo"
str.concat
p str # => "foo"
str = "foo"
str.concat "bar", "baz"
p str # => "foobarbaz"
str = "foo"
str.... -
String
# concat(other) -> self (9031.0) -
self に文字列 other を破壊的に連結します。 other が 整数である場合は other.chr(self.encoding) 相当の文字を末尾に追加します。
self に文字列 other を破壊的に連結します。
other が 整数である場合は other.chr(self.encoding) 相当の文字を末尾に追加します。
self を返します。
@param other 文字列もしくは 0 以上の整数
//emlist[例][ruby]{
str = "string"
str.concat "XXX"
p str # => "stringXXX"
str << "YYY"
p str # => "stringXXXYYY"
str << 65 # 文字AのASCIIコード
p str # => "stri... -
RubyVM
:: InstructionSequence # absolute _ path -> String | nil (9028.0) -
self が表す命令シーケンスの絶対パスを返します。
self が表す命令シーケンスの絶対パスを返します。
self を文字列から作成していた場合は nil を返します。
例1:irb で実行した場合
iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
# => <RubyVM::InstructionSequence:<compiled>@<compiled>>
iseq.absolute_path
# => nil
例2: RubyVM::InstructionSequence.compile_file を使用した場合
# /tmp/method.... -
RubyVM
:: InstructionSequence # base _ label -> String (9028.0) -
self が表す命令シーケンスの基本ラベルを返します。
self が表す命令シーケンスの基本ラベルを返します。
例1:irb で実行した場合
iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
# => <RubyVM::InstructionSequence:<compiled>@<compiled>>
iseq.base_label
# => "<compiled>"
例2: RubyVM::InstructionSequence.compile_file を使用した場合
# /tmp/method.rb
def hello
puts "h... -
RubyVM
:: InstructionSequence # label -> String (9028.0) -
self が表す命令シーケンスのラベルを返します。通常、メソッド名、クラス名、 モジュール名などで構成されます。
self が表す命令シーケンスのラベルを返します。通常、メソッド名、クラス名、
モジュール名などで構成されます。
トップレベルでは "<main>" を返します。self を文字列から作成していた場合
は "<compiled>" を返します。
例1:irb で実行した場合
iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
# => <RubyVM::InstructionSequence:<compiled>@<compiled>>
iseq.label
# => "<compiled>"
例2: R... -
RubyVM
:: InstructionSequence # path -> String (9028.0) -
self が表す命令シーケンスの相対パスを返します。
self が表す命令シーケンスの相対パスを返します。
self の作成時に指定した文字列を返します。self を文字列から作成していた
場合は "<compiled>" を返します。
例1:irb で実行した場合
iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
# => <RubyVM::InstructionSequence:<compiled>@<compiled>>
iseq.path
# => "<compiled>"
例2: RubyVM::InstructionSequence.compi... -
Set
# add(o) -> self (9028.0) -
集合にオブジェクト o を加えます。
集合にオブジェクト o を加えます。
add は常に self を返します。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//} -
Set
# add?(o) -> self | nil (9028.0) -
集合にオブジェクト o を加えます。
集合にオブジェクト o を加えます。
add は常に self を返します。<< は add の別名です。
add? は、集合に要素が追加された場合には self を、変化がなかった場合には
nil を返します。
@param o 追加対象のオブジェクトを指定します。
//emlist[][ruby]{
s = Set[1, 2]
s << 10
p s # => #<Set: {1, 2, 10}>
p s.add?(20) # => #<Set: {1, 2, 10, 20}>
p s.add?(2) # => nil
//} -
Array
# pack(template) -> String (1810.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
配列の内容を template で指定された文字列にしたがって、
バイナリとしてパックした文字列を返します。
テンプレートは
型指定文字列とその長さ(省略時は1)を並べたものです。長さと
して * が指定された時は「残りのデータ全て」の長さを
表します。型指定文字は以下で述べる pack テンプレート文字列の通りです。
buffer が指定されていれば、バッファとして使って返値として返します。
もし template の最初にオフセット (@) が指定されていれば、
結果はオフセットの後ろから詰められます。
buffer の元の内容がオフセットより長ければ、
オフセットより後ろの部分は上... -
Array
# pack(template , buffer: String . new) -> String (1810.0) -
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
配列の内容を template で指定された文字列にしたがって、
バイナリとしてパックした文字列を返します。
テンプレートは
型指定文字列とその長さ(省略時は1)を並べたものです。長さと
して * が指定された時は「残りのデータ全て」の長さを
表します。型指定文字は以下で述べる pack テンプレート文字列の通りです。
buffer が指定されていれば、バッファとして使って返値として返します。
もし template の最初にオフセット (@) が指定されていれば、
結果はオフセットの後ろから詰められます。
buffer の元の内容がオフセットより長ければ、
オフセットより後ろの部分は上... -
String
# unpack(template) -> Array (1792.0) -
Array#pack で生成された文字列を テンプレート文字列 template にしたがってアンパックし、 それらの要素を含む配列を返します。
Array#pack で生成された文字列を
テンプレート文字列 template にしたがってアンパックし、
それらの要素を含む配列を返します。
@param template pack テンプレート文字列
@return オブジェクトの配列
以下にあげるものは、Array#pack、String#unpack、String#unpack1
のテンプレート文字の一覧です。テンプレート文字は後に「長さ」を表す数字
を続けることができます。「長さ」の代わりに`*'とすることで「残り全て」
を表すこともできます。
長さの意味はテンプレート文字により異なりますが大... -
TracePoint
# instruction _ sequence -> RubyVM :: InstructionSequence (364.0) -
script_compiledイベント発生時にコンパイルされた RubyVM::InstructionSequenceインスタンスを返します。
script_compiledイベント発生時にコンパイルされた
RubyVM::InstructionSequenceインスタンスを返します。
//emlist[例][ruby]{
TracePoint.new(:script_compiled) do |tp|
p tp.instruction_sequence # => <RubyVM::InstructionSequence:block in <main>@(eval):1>
end.enable do
eval("puts 'hello'")
end
//}
@raise RuntimeError :script_comp... -
String
# split(sep = $ ; , limit = 0) -> [String] (190.0) -
第 1 引数 sep で指定されたセパレータによって文字列を limit 個まで分割し、 結果を文字列の配列で返します。 ブロックを指定すると、配列を返す代わりに分割した文字列で ブロックを呼び出します。
第 1 引数 sep で指定されたセパレータによって文字列を limit 個まで分割し、
結果を文字列の配列で返します。
ブロックを指定すると、配列を返す代わりに分割した文字列で
ブロックを呼び出します。
第 1 引数 sep は以下のいずれかです。
: 正規表現
正規表現にマッチする部分で分割する。
特に、括弧によるグルーピングがあればそのグループにマッチした
文字列も結果の配列に含まれる (後述)。
: 文字列
その文字列自体にマッチする部分で分割する。
: 1 バイトの空白文字 ' '
先頭の連続する空白を除いたうえで、連続する空白で分割する... -
String
# split(sep = $ ; , limit = 0) {|s| . . . } -> self (190.0) -
第 1 引数 sep で指定されたセパレータによって文字列を limit 個まで分割し、 結果を文字列の配列で返します。 ブロックを指定すると、配列を返す代わりに分割した文字列で ブロックを呼び出します。
第 1 引数 sep で指定されたセパレータによって文字列を limit 個まで分割し、
結果を文字列の配列で返します。
ブロックを指定すると、配列を返す代わりに分割した文字列で
ブロックを呼び出します。
第 1 引数 sep は以下のいずれかです。
: 正規表現
正規表現にマッチする部分で分割する。
特に、括弧によるグルーピングがあればそのグループにマッチした
文字列も結果の配列に含まれる (後述)。
: 文字列
その文字列自体にマッチする部分で分割する。
: 1 バイトの空白文字 ' '
先頭の連続する空白を除いたうえで、連続する空白で分割する... -
Array
# bsearch -> Enumerator (136.0) -
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値を二分探 索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返し ます。self はあらかじめソートしておく必要があります。
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値を二分探
索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返し
ます。self はあらかじめソートしておく必要があります。
本メソッドはブロックを評価した結果により以下のいずれかのモードで動作し
ます。
* find-minimum モード
* find-any モード
find-minimum モード(特に理由がない限りはこのモードを使う方がいいでしょ
う)では、条件判定の結果を以下のようにする必要があります。
* 求める値がブロックパラメータの値か前の要素の場合: true を返... -
Array
# bsearch { |x| . . . } -> object | nil (136.0) -
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値を二分探 索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返し ます。self はあらかじめソートしておく必要があります。
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値を二分探
索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返し
ます。self はあらかじめソートしておく必要があります。
本メソッドはブロックを評価した結果により以下のいずれかのモードで動作し
ます。
* find-minimum モード
* find-any モード
find-minimum モード(特に理由がない限りはこのモードを使う方がいいでしょ
う)では、条件判定の結果を以下のようにする必要があります。
* 求める値がブロックパラメータの値か前の要素の場合: true を返... -
Object
# ===(other) -> bool (118.0) -
case 式で使用されるメソッドです。d:spec/control#case も参照してください。
case 式で使用されるメソッドです。d:spec/control#case も参照してください。
このメソッドは case 式での振る舞いを考慮して、
各クラスの性質に合わせて再定義すべきです。
デフォルトでは内部で Object#== を呼び出します。
when 節の式をレシーバーとして === を呼び出すことに注意してください。
また Enumerable#grep でも使用されます。
@param other 比較するオブジェクトです。
//emlist[][ruby]{
age = 12
# (0..2).===(12), (3..6).===(12), ... が実行... -
BasicObject
# ! -> bool (100.0) -
オブジェクトを真偽値として評価し、その論理否定を返します。
オブジェクトを真偽値として評価し、その論理否定を返します。
このメソッドは self が nil または false であれば真を、そうでない場合は偽を返します。
主に論理式の評価に伴って副作用を引き起こすことを目的に
再定義するものと想定されています。
このメソッドを再定義しても Ruby の制御式において nil や false 以外が偽として
扱われることはありません。
@return オブジェクトが偽であれば真、そうでない場合は偽
//emlist[例][ruby]{
class NegationRecorder < BasicObject
def initialize
... -
Range
# max -> object | nil (94.0) -
範囲内の最大の値、もしくは最大の n 要素が降順で入った配列を返します。
範囲内の最大の値、もしくは最大の n 要素が降順で入った配列を返します。
@param n 取得する要素数。
//emlist[例][ruby]{
(1..5).max # => 5
//}
//emlist[例][ruby]{
(1..5).max(3) # => [5, 4, 3]
//}
始端が終端より大きい場合、もしくは、終端を含まない範囲オブジェクトの始端が終端と
等しい場合は、引数を指定しない形式では nil を返します。
引数を指定する形式では、空の配列を返します。
//emlist[例][ruby]{
(2..1).max # => nil
(1..... -
Range
# max {|a , b| . . . } -> object | nil (94.0) -
ブロックの評価結果で範囲内の各要素の大小判定を行い、最大の要素、もしくは 最大の n 要素を返します。引数を指定しない形式では、 範囲内に要素が存在しなければ nil を返します。 引数を指定する形式では、空の配列を返します。
ブロックの評価結果で範囲内の各要素の大小判定を行い、最大の要素、もしくは
最大の n 要素を返します。引数を指定しない形式では、
範囲内に要素が存在しなければ nil を返します。
引数を指定する形式では、空の配列を返します。
ブロックの値は、a > b のとき正、 a == b のとき 0、a < b のとき負の整数
を、期待しています。
@param n 取得する要素数。
@raise TypeError ブロックが整数以外を返したときに発生します。
@see Range#last, Range#min, Enumerable#max
//emlist[例][ruby]{
h ... -
Range
# max(n) -> [object] (94.0) -
範囲内の最大の値、もしくは最大の n 要素が降順で入った配列を返します。
範囲内の最大の値、もしくは最大の n 要素が降順で入った配列を返します。
@param n 取得する要素数。
//emlist[例][ruby]{
(1..5).max # => 5
//}
//emlist[例][ruby]{
(1..5).max(3) # => [5, 4, 3]
//}
始端が終端より大きい場合、もしくは、終端を含まない範囲オブジェクトの始端が終端と
等しい場合は、引数を指定しない形式では nil を返します。
引数を指定する形式では、空の配列を返します。
//emlist[例][ruby]{
(2..1).max # => nil
(1..... -
Range
# max(n) {|a , b| . . . } -> [object] (94.0) -
ブロックの評価結果で範囲内の各要素の大小判定を行い、最大の要素、もしくは 最大の n 要素を返します。引数を指定しない形式では、 範囲内に要素が存在しなければ nil を返します。 引数を指定する形式では、空の配列を返します。
ブロックの評価結果で範囲内の各要素の大小判定を行い、最大の要素、もしくは
最大の n 要素を返します。引数を指定しない形式では、
範囲内に要素が存在しなければ nil を返します。
引数を指定する形式では、空の配列を返します。
ブロックの値は、a > b のとき正、 a == b のとき 0、a < b のとき負の整数
を、期待しています。
@param n 取得する要素数。
@raise TypeError ブロックが整数以外を返したときに発生します。
@see Range#last, Range#min, Enumerable#max
//emlist[例][ruby]{
h ... -
Range
# min -> object | nil (94.0) -
範囲内の最小の値、もしくは最小の n 要素が昇順で入った配列を返します。
範囲内の最小の値、もしくは最小の n 要素が昇順で入った配列を返します。
@param n 取得する要素数。
//emlist[例][ruby]{
(1..5).min # => 1
//}
//emlist[例][ruby]{
(1..5).min(3) # => [1, 2, 3]
//}
始端が終端より大きい場合、もしくは、終端を含まない範囲オブジェクトの始端が終端と
等しい場合は、引数を指定しない形式では nil を返します。
引数を指定する形式では、空の配列を返します。
//emlist[例][ruby]{
(2..1).min # => nil
(1...1... -
Range
# min {|a , b| . . . } -> object | nil (94.0) -
ブロックの評価結果で範囲内の各要素の大小判定を行い、最小の要素、もしくは 最小の n 要素を返します。引数を指定しない形式では、範囲内に要素が存在しなければ nil を返します。引数を指定する形式では、空の配列を返します。
ブロックの評価結果で範囲内の各要素の大小判定を行い、最小の要素、もしくは
最小の n 要素を返します。引数を指定しない形式では、範囲内に要素が存在しなければ
nil を返します。引数を指定する形式では、空の配列を返します。
ブロックの値は、a > b のとき正、a == b のとき 0、 a < b のとき負の整数
を、期待しています。
@param n 取得する要素数。
@raise TypeError ブロックが整数以外を返したときに発生します。
@see Range#first, Range#max, Enumerable#min
//emlist[例][ruby]{
h =... -
Range
# min(n) -> [object] (94.0) -
範囲内の最小の値、もしくは最小の n 要素が昇順で入った配列を返します。
範囲内の最小の値、もしくは最小の n 要素が昇順で入った配列を返します。
@param n 取得する要素数。
//emlist[例][ruby]{
(1..5).min # => 1
//}
//emlist[例][ruby]{
(1..5).min(3) # => [1, 2, 3]
//}
始端が終端より大きい場合、もしくは、終端を含まない範囲オブジェクトの始端が終端と
等しい場合は、引数を指定しない形式では nil を返します。
引数を指定する形式では、空の配列を返します。
//emlist[例][ruby]{
(2..1).min # => nil
(1...1... -
Range
# min(n) {|a , b| . . . } -> [object] (94.0) -
ブロックの評価結果で範囲内の各要素の大小判定を行い、最小の要素、もしくは 最小の n 要素を返します。引数を指定しない形式では、範囲内に要素が存在しなければ nil を返します。引数を指定する形式では、空の配列を返します。
ブロックの評価結果で範囲内の各要素の大小判定を行い、最小の要素、もしくは
最小の n 要素を返します。引数を指定しない形式では、範囲内に要素が存在しなければ
nil を返します。引数を指定する形式では、空の配列を返します。
ブロックの値は、a > b のとき正、a == b のとき 0、 a < b のとき負の整数
を、期待しています。
@param n 取得する要素数。
@raise TypeError ブロックが整数以外を返したときに発生します。
@see Range#first, Range#max, Enumerable#min
//emlist[例][ruby]{
h =... -
Range
# cover?(obj) -> bool (91.0) -
obj が範囲内に含まれている時に true を返します。
obj が範囲内に含まれている時に true を返します。
Range#include? と異なり <=> メソッドによる演算により範囲内かどうかを判定します。
Range#include? は原則として離散値を扱い、
Range#cover? は連続値を扱います。
(数値については、例外として Range#include? も連続的に扱います。)
Range#exclude_end?がfalseなら「begin <= obj <= end」を、
trueなら「begin <= obj < end」を意味します。
@param obj 比較対象のオブジェクトを指定します。
//eml... -
Array
# bsearch _ index -> Enumerator (82.0) -
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値の位置を 二分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返します。self はあらかじめソートしておく必要があります。
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値の位置を
二分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil
を返します。self はあらかじめソートしておく必要があります。
本メソッドはArray#bsearchと同様に、ブロックを評価した結果により2
つのモードで動作します。Array#bsearch との違いは見つかった要素自
身を返すか位置を返すかのみです。各モードのより詳細な違いについては
Array#bsearch を参照してください。
//emlist[例: find-minimum モード][ruby]{
ary = [0,... -
Array
# bsearch _ index { |x| . . . } -> Integer | nil (82.0) -
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値の位置を 二分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返します。self はあらかじめソートしておく必要があります。
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値の位置を
二分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil
を返します。self はあらかじめソートしておく必要があります。
本メソッドはArray#bsearchと同様に、ブロックを評価した結果により2
つのモードで動作します。Array#bsearch との違いは見つかった要素自
身を返すか位置を返すかのみです。各モードのより詳細な違いについては
Array#bsearch を参照してください。
//emlist[例: find-minimum モード][ruby]{
ary = [0,... -
Class
# subclasses -> [Class] (82.0) -
自身が直接のスーパークラスになっている(特異クラスを除く)クラスの配列を返します。 返り値の配列の順序は未定義です。
自身が直接のスーパークラスになっている(特異クラスを除く)クラスの配列を返します。
返り値の配列の順序は未定義です。
//emlist[例][ruby]{
class A; end
class B < A; end
class C < B; end
class D < A; end
A.subclasses # => [D, B]
B.subclasses # => [C]
C.subclasses # => []
//}
@see Class#superclass -
Float
# divmod(other) -> [Numeric] (82.0) -
self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
self を other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
このメソッドは、メソッド / と % によって定義されています。
@param other 自身を割る数を指定します。
//emli... -
Hash
# delete _ if -> Enumerator (82.0) -
キーと値を引数としてブロックを評価した結果が真であ るような要素を self から削除します。
キーと値を引数としてブロックを評価した結果が真であ
るような要素を self から削除します。
delete_if は常に self を返します。
reject! は、要素を削除しなかった場合には nil を返し、
そうでなければ self を返します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
h = { 2 => "8" ,4 => "6" ,6 => "4" ,8 => "2" }
p h.reject!{|key, value| key.to_i < value.to_i } #=> { 6 => "4", 8 =... -
Hash
# delete _ if {|key , value| . . . } -> self (82.0) -
キーと値を引数としてブロックを評価した結果が真であ るような要素を self から削除します。
キーと値を引数としてブロックを評価した結果が真であ
るような要素を self から削除します。
delete_if は常に self を返します。
reject! は、要素を削除しなかった場合には nil を返し、
そうでなければ self を返します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
h = { 2 => "8" ,4 => "6" ,6 => "4" ,8 => "2" }
p h.reject!{|key, value| key.to_i < value.to_i } #=> { 6 => "4", 8 =... -
Hash
# reject! -> Enumerator (82.0) -
キーと値を引数としてブロックを評価した結果が真であ るような要素を self から削除します。
キーと値を引数としてブロックを評価した結果が真であ
るような要素を self から削除します。
delete_if は常に self を返します。
reject! は、要素を削除しなかった場合には nil を返し、
そうでなければ self を返します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
h = { 2 => "8" ,4 => "6" ,6 => "4" ,8 => "2" }
p h.reject!{|key, value| key.to_i < value.to_i } #=> { 6 => "4", 8 =... -
Hash
# reject! {|key , value| . . . } -> self|nil (82.0) -
キーと値を引数としてブロックを評価した結果が真であ るような要素を self から削除します。
キーと値を引数としてブロックを評価した結果が真であ
るような要素を self から削除します。
delete_if は常に self を返します。
reject! は、要素を削除しなかった場合には nil を返し、
そうでなければ self を返します。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
h = { 2 => "8" ,4 => "6" ,6 => "4" ,8 => "2" }
p h.reject!{|key, value| key.to_i < value.to_i } #=> { 6 => "4", 8 =... -
Module
# include(*mod) -> self (82.0) -
モジュール mod をインクルードします。
モジュール mod をインクルードします。
@param mod Module のインスタンス( Enumerable など)を指定します。
@raise ArgumentError 継承関係が循環してしまうような include を行った場合に発生します。
//emlist[例][ruby]{
module M
end
module M2
include M
end
module M
include M2
end
//}
実行結果:
-:3:in `append_features': cyclic include detected (ArgumentError)
... -
Numeric
# %(other) -> Numeric (82.0) -
self を other で割った余り r を返します。
self を other で割った余り r を返します。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき 0 <= r < other
* other < 0 のとき other < r <= 0
* q は整数
をみたす数です。
余り r は、other と同じ符号になります。
商 q は、Numeric#div (あるいは 「/」)で求められます。
modulo はメソッド % の呼び出しとして定義されています。
@param other 自身を割る数を指定します。
//emlist[... -
Numeric
# div(other) -> Integer (82.0) -
self を other で割った整数の商 q を返します。
self を other で割った整数の商 q を返します。
ここで、商 q と余り r は、それぞれ
* self == other * q + r
と
* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
商に対応する余りは Numeric#modulo で求められます。
div はメソッド / を呼びだし、floorを取ることで計算されます。
メソッド / の定義はサブクラスごとの定義を用います。
@param other 自身を割る数を... -
Numeric
# divmod(other) -> [Numeric] (82.0) -
self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
self を other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
divmod が返す商は Numeric#div と同じです。
また余りは、Numeric#modulo と同じです。
このメソッド... -
Numeric
# modulo(other) -> Numeric (82.0) -
self を other で割った余り r を返します。
self を other で割った余り r を返します。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき 0 <= r < other
* other < 0 のとき other < r <= 0
* q は整数
をみたす数です。
余り r は、other と同じ符号になります。
商 q は、Numeric#div (あるいは 「/」)で求められます。
modulo はメソッド % の呼び出しとして定義されています。
@param other 自身を割る数を指定します。
//emlist[... -
Numeric
# remainder(other) -> Numeric (82.0) -
self を other で割った余り r を返します。
self を other で割った余り r を返します。
ここで、商 q と余り r は、
* self == other * q + r
と
* self > 0 のとき 0 <= r < |other|
* self < 0 のとき -|other| < r <= 0
* q は整数
をみたす数です。r の符号は self と同じになります。
商 q を直接返すメソッドはありません。self.quo(other).truncate がそれに相当します。
@param other 自身を割る数を指定します。
//emlist[例][ruby]{
p 13.... -
Range
# bsearch -> Enumerator (82.0) -
ブロックの評価結果で範囲内の各要素の大小判定を行い、条件を満たす値を二 分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil を 返します。
ブロックの評価結果で範囲内の各要素の大小判定を行い、条件を満たす値を二
分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil を
返します。
本メソッドはブロックを評価した結果により以下のいずれかのモードで動作し
ます。
* find-minimum モード
* find-any モード
find-minimum モード(特に理由がない限りはこのモードを使う方がいいでしょ
う)では、条件判定の結果を以下のようにする必要があります。
* 求める値がブロックパラメータの値か前の要素の場合: true を返す
* 求める値がブロックパラメータより後の要... -
Range
# bsearch {|obj| . . . } -> object | nil (82.0) -
ブロックの評価結果で範囲内の各要素の大小判定を行い、条件を満たす値を二 分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil を 返します。
ブロックの評価結果で範囲内の各要素の大小判定を行い、条件を満たす値を二
分探索(計算量は O(log n))で検索します。要素が見つからない場合は nil を
返します。
本メソッドはブロックを評価した結果により以下のいずれかのモードで動作し
ます。
* find-minimum モード
* find-any モード
find-minimum モード(特に理由がない限りはこのモードを使う方がいいでしょ
う)では、条件判定の結果を以下のようにする必要があります。
* 求める値がブロックパラメータの値か前の要素の場合: true を返す
* 求める値がブロックパラメータより後の要... -
Integer
# downto(min) -> Enumerator (76.0) -
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。
@param min 数値
@return self を返します。
//emlist[][ruby]{
5.downto(1) {|i| print i, " " } # => 5 4 3 2 1
//}
@see Integer#upto, Numeric#step, Integer#times -
Integer
# downto(min) {|n| . . . } -> self (76.0) -
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。 self < min であれば何もしません。
self から min まで 1 ずつ減らしながらブロックを繰り返し実行します。
self < min であれば何もしません。
@param min 数値
@return self を返します。
//emlist[][ruby]{
5.downto(1) {|i| print i, " " } # => 5 4 3 2 1
//}
@see Integer#upto, Numeric#step, Integer#times -
Range
# cover?(range) -> bool (76.0) -
2.6 以降の cover? は、Range#include? や Range#=== と異なり、 引数に Range オブジェクトを指定して比較できます。
2.6 以降の cover? は、Range#include? や Range#=== と異なり、
引数に Range オブジェクトを指定して比較できます。
引数が Range オブジェクトの場合、引数の範囲が self の範囲に含まれる時に true を返します。
@param range 比較対象の Range クラスのインスタンスを指定します。
//emlist[引数が Range の例][ruby]{
(1..5).cover?(2..3) #=> true
(1..5).cover?(0..6) #=> false
(1..5).cover?(1...6) ... -
BasicObject
# instance _ eval {|obj| . . . } -> object (64.0) -
オブジェクトのコンテキストで文字列 expr またはオブジェクト自身をブロックパラメータとするブロックを 評価してその結果を返します。
オブジェクトのコンテキストで文字列 expr またはオブジェクト自身をブロックパラメータとするブロックを
評価してその結果を返します。
オブジェクトのコンテキストで評価するとは評価中の self をそのオブジェクトにして実行するということです。
また、文字列 expr やブロック中でメソッドを定義すればそのオブジェクトの特異メソッドが定義されます。
ただし、ローカル変数だけは、文字列 expr の評価では instance_eval の外側のスコープと、ブロックの評価ではそのブロックの外側のスコープと、共有します。
メソッド定義の中で instance_eval でメソッドを定義した場... -
BasicObject
# instance _ eval(expr , filename = "(eval)" , lineno = 1) -> object (64.0) -
オブジェクトのコンテキストで文字列 expr またはオブジェクト自身をブロックパラメータとするブロックを 評価してその結果を返します。
オブジェクトのコンテキストで文字列 expr またはオブジェクト自身をブロックパラメータとするブロックを
評価してその結果を返します。
オブジェクトのコンテキストで評価するとは評価中の self をそのオブジェクトにして実行するということです。
また、文字列 expr やブロック中でメソッドを定義すればそのオブジェクトの特異メソッドが定義されます。
ただし、ローカル変数だけは、文字列 expr の評価では instance_eval の外側のスコープと、ブロックの評価ではそのブロックの外側のスコープと、共有します。
メソッド定義の中で instance_eval でメソッドを定義した場... -
Class
# superclass -> Class | nil (64.0) -
自身のスーパークラスを返します。
自身のスーパークラスを返します。
//emlist[例][ruby]{
File.superclass #=> IO
IO.superclass #=> Object
class Foo; end
class Bar < Foo; end
Bar.superclass #=> Foo
Object.superclass #=> BasicObject
//}
ただし BasicObject.superclass は nil を返します。
//emlist[例][ruby]{
BasicObject.supercl... -
Enumerable
# slice _ when {|elt _ before , elt _ after| bool } -> Enumerator (64.0) -
要素を前から順にブロックで評価し、その結果によって要素をチャンクに分け た(グループ化した)要素を持つEnumerator を返します。
要素を前から順にブロックで評価し、その結果によって要素をチャンクに分け
た(グループ化した)要素を持つEnumerator を返します。
隣り合う値をブロックパラメータ elt_before、elt_after に渡し、ブロックの
評価値が真になる所でチャンクを区切ります。
ブロックは self の長さ - 1 回呼び出されます。
@return チャンクごとの配列をブロックパラメータに渡す Enumerator
を返します。eachメソッドは以下のように呼び出します。
//emlist{
enum.slice_when { |elt_before, elt_aft... -
Enumerator
:: Lazy # drop _ while {|item| . . . } -> Enumerator :: Lazy (64.0) -
Enumerable#drop_while と同じですが、配列ではなくEnumerator::Lazy を返します。
Enumerable#drop_while と同じですが、配列ではなくEnumerator::Lazy を返します。
//emlist[例][ruby]{
1.step.lazy.drop_while { |i| i < 42 }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:drop_while>
1.step.lazy.drop_while { |i| i < 42 }.take(10).force
# => [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]
//... -
Enumerator
:: Lazy # take _ while -> Enumerator :: Lazy (64.0) -
Enumerable#take_while と同じですが、配列ではなくEnumerator::Lazy を返します。
Enumerable#take_while と同じですが、配列ではなくEnumerator::Lazy を返します。
//emlist[例][ruby]{
1.step.lazy.zip(('a'..'z').cycle).take_while { |e| e.first < 100_000 }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:zip(#<Enumerator: "a".."z":cycle>)>:take_while>
1.step.lazy.... -
Enumerator
:: Lazy # take _ while {|item| . . . } -> Enumerator :: Lazy (64.0) -
Enumerable#take_while と同じですが、配列ではなくEnumerator::Lazy を返します。
Enumerable#take_while と同じですが、配列ではなくEnumerator::Lazy を返します。
//emlist[例][ruby]{
1.step.lazy.zip(('a'..'z').cycle).take_while { |e| e.first < 100_000 }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:zip(#<Enumerator: "a".."z":cycle>)>:take_while>
1.step.lazy.... -
Hash
# to _ h -> self | Hash (64.0) -
self を返します。Hash クラスのサブクラスから呼び出した場合は self を Hash オブジェクトに変換します。
self を返します。Hash クラスのサブクラスから呼び出した場合は
self を Hash オブジェクトに変換します。
//emlist[例][ruby]{
hash = {}
p hash.to_h # => {}
p hash.to_h == hash # => true
class MyHash < Hash;end
my_hash = MyHash.new
p my_hash.to_h # => {}
p my_hash.class # => MyHash
p my_hash.to_h.class # => Hash
//}
ブロックを... -
Hash
# to _ h {|key , value| block } -> Hash (64.0) -
self を返します。Hash クラスのサブクラスから呼び出した場合は self を Hash オブジェクトに変換します。
self を返します。Hash クラスのサブクラスから呼び出した場合は
self を Hash オブジェクトに変換します。
//emlist[例][ruby]{
hash = {}
p hash.to_h # => {}
p hash.to_h == hash # => true
class MyHash < Hash;end
my_hash = MyHash.new
p my_hash.to_h # => {}
p my_hash.class # => MyHash
p my_hash.to_h.class # => Hash
//}
ブロックを... -
Method
# inspect -> String (64.0) -
self を読みやすい文字列として返します。
self を読みやすい文字列として返します。
以下の形式の文字列を返します。
#<Method: klass1(klass2)#method(arg) foo.rb:2> (形式1)
klass1 は、Method#inspect では、レシーバのクラス名、
UnboundMethod#inspect では、UnboundMethod オブジェクトの生成
元となったクラス/モジュール名です。
klass2 は、実際にそのメソッドを定義しているクラス/モジュール名、
method は、メソッド名を表します。
arg は引数を表します。
「foo.rb:2」は Method#... -
Method
# to _ s -> String (64.0) -
self を読みやすい文字列として返します。
self を読みやすい文字列として返します。
以下の形式の文字列を返します。
#<Method: klass1(klass2)#method(arg) foo.rb:2> (形式1)
klass1 は、Method#inspect では、レシーバのクラス名、
UnboundMethod#inspect では、UnboundMethod オブジェクトの生成
元となったクラス/モジュール名です。
klass2 は、実際にそのメソッドを定義しているクラス/モジュール名、
method は、メソッド名を表します。
arg は引数を表します。
「foo.rb:2」は Method#... -
Module
# instance _ methods(inherited _ too = true) -> [Symbol] (64.0) -
そのモジュールで定義されている public および protected メソッド名 の一覧を配列で返します。
そのモジュールで定義されている public および protected メソッド名
の一覧を配列で返します。
@param inherited_too false を指定するとそのモジュールで定義されているメソッドのみ返します。
@see Object#methods
//emlist[例1][ruby]{
class Foo
private; def private_foo() end
protected; def protected_foo() end
public; def public_foo() end
end
# あるクラスのインスタンス... -
Module
# undef _ method(*name) -> self (64.0) -
このモジュールのインスタンスメソッド name を未定義にします。
このモジュールのインスタンスメソッド name を未定義にします。
@param name 0 個以上の String か Symbol を指定します。
@raise NameError 指定したインスタンスメソッドが定義されていない場合に発生します。
=== 「未定義にする」とは
このモジュールのインスタンスに対して name という
メソッドを呼び出すことを禁止するということです。
スーパークラスの定義が継承されるかどうかという点において、
「未定義」は「メソッドの削除」とは区別されます。
以下のコード例を参照してください。
//emlist[例][ruby]{
class A
... -
Object
# enum _ for(method = :each , *args) -> Enumerator (64.0) -
Enumerator.new(self, method, *args) を返します。
Enumerator.new(self, method, *args) を返します。
ブロックを指定した場合は Enumerator#size がブロックの評価結果を返
します。ブロックパラメータは引数 args です。
@param method メソッド名の文字列かシンボルです。
@param args 呼び出すメソッドに渡される引数です。
//emlist[][ruby]{
str = "xyz"
enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]
#... -
Object
# enum _ for(method = :each , *args) {|*args| . . . } -> Enumerator (64.0) -
Enumerator.new(self, method, *args) を返します。
Enumerator.new(self, method, *args) を返します。
ブロックを指定した場合は Enumerator#size がブロックの評価結果を返
します。ブロックパラメータは引数 args です。
@param method メソッド名の文字列かシンボルです。
@param args 呼び出すメソッドに渡される引数です。
//emlist[][ruby]{
str = "xyz"
enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]
#... -
Object
# instance _ of?(klass) -> bool (64.0) -
オブジェクトがクラス klass の直接のインスタンスである時真を返します。
オブジェクトがクラス klass の直接のインスタンスである時真を返します。
obj.instance_of?(c) が成立する時には、常に obj.kind_of?(c) も成立します。
@param klass Classかそのサブクラスのインスタンスです。
//emlist[][ruby]{
class C < Object
end
class S < C
end
obj = S.new
p obj.instance_of?(S) # true
p obj.instance_of?(C) # false
//}
@see Object#kind_of?... -
Object
# is _ a?(mod) -> bool (64.0) -
オブジェクトが指定されたクラス mod かそのサブクラスのインスタンスであるとき真を返します。
オブジェクトが指定されたクラス mod かそのサブクラスのインスタンスであるとき真を返します。
また、オブジェクトがモジュール mod をインクルードしたクラスかそのサブクラス
のインスタンスである場合にも真を返します。
Module#includeだけではなく、Object#extendやModule#prependに
よってサブクラスのインスタンスになる場合も含みます。
上記のいずれでもない場合に false を返します。
@param mod クラスやモジュールなど、Moduleかそのサブクラスのインスタンスです。
//emlist[][ruby]{
module M
end
c... -
Object
# kind _ of?(mod) -> bool (64.0) -
オブジェクトが指定されたクラス mod かそのサブクラスのインスタンスであるとき真を返します。
オブジェクトが指定されたクラス mod かそのサブクラスのインスタンスであるとき真を返します。
また、オブジェクトがモジュール mod をインクルードしたクラスかそのサブクラス
のインスタンスである場合にも真を返します。
Module#includeだけではなく、Object#extendやModule#prependに
よってサブクラスのインスタンスになる場合も含みます。
上記のいずれでもない場合に false を返します。
@param mod クラスやモジュールなど、Moduleかそのサブクラスのインスタンスです。
//emlist[][ruby]{
module M
end
c... -
Object
# methods(include _ inherited = true) -> [Symbol] (64.0) -
そのオブジェクトに対して呼び出せるメソッド名の一覧を返します。 このメソッドは public メソッドおよび protected メソッドの名前を返します。
そのオブジェクトに対して呼び出せるメソッド名の一覧を返します。
このメソッドは public メソッドおよび protected メソッドの名前を返します。
ただし特別に、引数が偽の時は Object#singleton_methods(false) と同じになっています。
@param include_inherited 引数が偽の時は Object#singleton_methods(false) と同じになります。
//emlist[例1][ruby]{
class Parent
private; def private_parent() end
protecte... -
Object
# to _ enum(method = :each , *args) -> Enumerator (64.0) -
Enumerator.new(self, method, *args) を返します。
Enumerator.new(self, method, *args) を返します。
ブロックを指定した場合は Enumerator#size がブロックの評価結果を返
します。ブロックパラメータは引数 args です。
@param method メソッド名の文字列かシンボルです。
@param args 呼び出すメソッドに渡される引数です。
//emlist[][ruby]{
str = "xyz"
enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]
#... -
Object
# to _ enum(method = :each , *args) {|*args| . . . } -> Enumerator (64.0) -
Enumerator.new(self, method, *args) を返します。
Enumerator.new(self, method, *args) を返します。
ブロックを指定した場合は Enumerator#size がブロックの評価結果を返
します。ブロックパラメータは引数 args です。
@param method メソッド名の文字列かシンボルです。
@param args 呼び出すメソッドに渡される引数です。
//emlist[][ruby]{
str = "xyz"
enum = str.enum_for(:each_byte)
p(a = enum.map{|b| '%02x' % b }) #=> ["78", "79", "7a"]
#... -
Proc
# ===(*arg) -> () (64.0) -
手続きオブジェクトを実行してその結果を返します。
手続きオブジェクトを実行してその結果を返します。
引数の渡され方はオブジェクトの生成方法によって異なります。
詳しくは Proc#lambda? を参照してください。
「===」は when の所に手続きを渡せるようにするためのものです。
//emlist[例][ruby]{
def sign(n)
case n
when lambda{|n| n > 0} then 1
when lambda{|n| n < 0} then -1
else 0
end
end
p sign(-4) #=> -1
p sign(0) #=> 0
p sign(7) #=> 1...