別のキーワード
種類
ライブラリ
- English (4)
- ビルトイン (164)
- abbrev (2)
- benchmark (4)
- bigdecimal (2)
-
cgi
/ util (4) - csv (1)
- date (8)
-
drb
/ acl (2) - e2mmap (2)
- erb (3)
- fileutils (1)
- forwardable (2)
-
irb
/ magic-file (1) - logger (3)
- openssl (9)
- optparse (2)
- profiler (1)
- psych (4)
- rake (2)
- readline (1)
- resolv (1)
-
rexml
/ document (6) -
rexml
/ streamlistener (1) -
ripper
/ filter (1) -
rubygems
/ commands / which _ command (2) -
rubygems
/ version (1) - scanf (2)
- set (2)
- socket (2)
- stringio (1)
- syslog (16)
- thwait (4)
- time (2)
- timeout (1)
- tsort (4)
- uri (6)
-
webrick
/ accesslog (6) -
webrick
/ log (2) - zlib (8)
クラス
- ACL (1)
- Array (18)
- BasicObject (1)
-
Benchmark
:: Tms (2) - BigDecimal (2)
- Bignum (2)
- CGI (4)
- Date (3)
- DateTime (5)
- Dir (1)
-
Encoding
:: Converter (4) - Enumerator (2)
-
Enumerator
:: Lazy (10) - File (4)
-
File
:: Stat (2) - Fixnum (2)
- Float (6)
-
Gem
:: Commands :: WhichCommand (2) - Hash (5)
- IO (2)
- Integer (5)
- Logger (2)
-
Logger
:: Formatter (1) - Module (4)
- Numeric (4)
- Object (4)
-
OpenSSL
:: BN (9) - OptionParser (2)
-
Psych
:: Handler (1) -
REXML
:: DocType (1) -
REXML
:: Entity (2) -
REXML
:: Text (1) -
Rake
:: FileList (1) - Regexp (1)
- Set (2)
- Socket (1)
- String (5)
- StringIO (1)
- Struct (2)
- ThreadsWait (4)
- Time (12)
-
WEBrick
:: Log (2) -
Zlib
:: GzipReader (7) -
Zlib
:: GzipWriter (1)
モジュール
- Abbrev (1)
- Benchmark (2)
-
ERB
:: Util (2) - Enumerable (45)
- Exception2MessageMapper (2)
- FileTest (2)
- FileUtils (1)
- Forwardable (2)
- Kernel (25)
- Process (1)
-
REXML
:: StreamListener (1) - Readline (1)
- Syslog (15)
- TSort (4)
- Timeout (1)
- URI (6)
-
WEBrick
:: AccessLog (5)
オブジェクト
-
IRB
:: MagicFile (1)
キーワード
-
$ & (1) -
$ & # 39; (1) -
$ 1 (1) -
$ 10 (1) -
$ 11 (1) -
$ 2 (1) -
$ 3 (1) -
$ 4 (1) -
$ 5 (1) -
$ 6 (1) -
$ 7 (1) -
$ 8 (1) -
$ 9 (1) -
$ OFS (1) -
$ OUTPUT _ FIELD _ SEPARATOR (1) -
$ PID (1) -
$ PROCESS _ ID (1) -
$ ` (1) -
$ ~ (1) - ** (2)
-
1
. 6 . 8から1 . 8 . 0への変更点(まとめ) (1) - =~ (1)
- ACL (1)
- ARGF (1)
- AccessLog (1)
- CLF (1)
-
CLF
_ TIME _ FORMAT (1) -
COMBINED
_ LOG _ FORMAT (1) -
COMMON
_ LOG _ FORMAT (1) - CSV (1)
-
ENCODING
_ SPEC _ RE (1) - ERB (1)
- EXT (1)
- Emitter (1)
- Entity (1)
- ExternalEntity (1)
- FORMAT (2)
- Fail (1)
- Filter (1)
- Hosts (1)
- Mapping (1)
- Marshal フォーマット (1)
-
NEWS for Ruby 2
. 0 . 0 (1) -
NEWS for Ruby 2
. 2 . 0 (1) - Numeric (1)
-
Profiler
_ _ (1) -
REFERER
_ LOG _ FORMAT (1) - Raise (1)
- Rubyで使われる記号の意味(正規表現の複雑な記号は除く) (1)
- Rubyの起動 (1)
- Ruby用語集 (1)
- Sequence (1)
- Status (1)
- String (1)
- Symbol (1)
- Syslog (1)
- TCPServer (1)
- Version (1)
-
_ strptime (2) - abbrev (2)
- alert (1)
-
all
_ waits (3) - benchmark (1)
- binwrite (1)
- chmod (1)
- chunk (2)
-
class
_ eval (2) - close (1)
- collect (1)
-
completion
_ proc= (1) - count (6)
- crit (1)
-
datetime
_ format (1) -
datetime
_ format= (2) - debug (1)
- decode (1)
-
decode
_ www _ form _ component (1) -
default
_ proc= (1) - delegate (1)
-
delete
_ if (2) - detect (2)
- divide (2)
- divmod (2)
-
drb
/ extservm (1) -
each
_ byte (2) -
each
_ strongly _ connected _ component _ from (2) - emerg (1)
- encode (1)
-
encode
_ www _ form _ component (1) - entitydecl (1)
-
enum
_ for (2) - environment (1)
- err (1)
- escape (2)
- find (3)
-
find
_ all (2) -
find
_ index (3) -
find
_ paths (1) - fnmatch (1)
- fnmatch? (1)
- format (2)
-
generate
_ prime (1) - getifaddrs (1)
-
group
_ by (2) - grpowned? (1)
- include (1)
- info (1)
-
instance
_ delegate (1) - irb (1)
- iso8601 (1)
-
keep
_ if (4) - lineno (1)
- lineno= (1)
- load (1)
- log (1)
- logger (1)
- map (1)
-
mask
_ bits! (1) - matches? (1)
- max (4)
-
max
_ by (4) -
method
_ missing (1) - min (4)
-
min
_ by (4) - minmax (2)
-
minmax
_ by (2) - mkdir (1)
-
mod
_ add (1) -
mod
_ exp (1) -
mod
_ inverse (1) -
mod
_ mul (1) -
mod
_ sqr (1) -
mod
_ sub (1) -
module
_ eval (2) - modulo (6)
- new (5)
-
next
_ float (1) - nonzero? (1)
- notice (1)
- nsec (1)
- open (2)
- open! (1)
- opened? (1)
- owned? (1)
- pack (1)
- pack テンプレート文字列 (1)
- partition (2)
- pathmap (1)
- pos (1)
- pow (2)
-
prev
_ float (1) -
primitive
_ convert (4) - printf (4)
- profile (1)
- reject (4)
- reject! (2)
- reopen (1)
- rexml (1)
-
rexml
/ parsers / pullparser (1) -
rexml
/ parsers / sax2parser (1) -
rexml
/ parsers / streamparser (1) - rfc3339 (1)
-
ruby 1
. 6 feature (1) -
ruby 1
. 8 . 4 feature (1) -
ruby 1
. 9 feature (1) - scanf (3)
- select (4)
- select! (4)
- setproctitle (1)
-
slice
_ after (2) -
slice
_ before (3) -
slice
_ when (1) - sort (2)
-
sort
_ by! (2) - sprintf (1)
- sprintf フォーマット (1)
-
start
_ document (1) - stat (1)
- strftime (2)
- strptime (4)
- subsec (1)
- tell (1)
- test (2)
-
time
_ format (1) -
time
_ format= (1) - timeout (1)
-
to
_ enum (2) -
to
_ f (1) -
to
_ h (1) -
to
_ i (1) -
to
_ s (1) - tracer (1)
- tsort (1)
-
tsort
_ each (2) -
tv
_ nsec (1) -
tv
_ sec (1) -
tv
_ usec (1) - u (1)
- unescape (2)
- unescapeElement (1)
-
unescape
_ element (1) - ungetc (1)
- uniq (2)
- unnormalized (1)
- unpack (1)
-
url
_ encode (1) - usec (1)
-
values
_ at (1) - warning (1)
-
world
_ readable? (2) -
world
_ writable? (2) - write (1)
- xmlschema (1)
- yaml (1)
- クラス/メソッドの定義 (1)
- リテラル (1)
- 正規表現 (1)
- 演算子式 (1)
検索結果
先頭5件
- Enumerator
:: Lazy # map {|item| . . . } -> Enumerator :: Lazy - Enumerator
:: Lazy # slice _ before {|elt| bool } -> Enumerator :: Lazy - Enumerator
:: Lazy # slice _ before(initial _ state) {|elt , state| bool } -> Enumerator :: Lazy - Enumerator
:: Lazy # slice _ before(pattern) -> Enumerator :: Lazy - File
. fnmatch(pattern , path , flags = 0) -> bool
-
Enumerator
:: Lazy # map {|item| . . . } -> Enumerator :: Lazy (19.0) -
Enumerable#map と同じですが、配列ではなくEnumerator::Lazy を返します。
Enumerable#map と同じですが、配列ではなくEnumerator::Lazy を返します。
@raise ArgumentError ブロックを指定しなかった場合に発生します。
//emlist[例][ruby]{
1.step.lazy.map{ |n| n % 3 == 0 }
# => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator: 1:step>>:map>
1.step.lazy.collect{ |n| n.succ }.take(10).force
# => [2, 3, 4, 5, 6, 7, 8,... -
Enumerator
:: Lazy # slice _ before {|elt| bool } -> Enumerator :: Lazy (19.0) -
Enumerable#slice_before と同じですが、配列ではなく Enumerator::Lazy を返します。
Enumerable#slice_before と同じですが、配列ではなく Enumerator::Lazy を返します。
//emlist[例][ruby]{
1.step.lazy.slice_before { |e| e.even? }
# => #<Enumerator::Lazy: #<Enumerator: #<Enumerator::Generator:0x00007f9f31844ce8>:each>>
1.step.lazy.slice_before { |e| e % 3 == 0 }.take(5).force
# => [[1, 2], [3, 4, 5], [6... -
Enumerator
:: Lazy # slice _ before(initial _ state) {|elt , state| bool } -> Enumerator :: Lazy (19.0) -
Enumerable#slice_before と同じですが、配列ではなく Enumerator::Lazy を返します。
Enumerable#slice_before と同じですが、配列ではなく Enumerator::Lazy を返します。
//emlist[例][ruby]{
1.step.lazy.slice_before { |e| e.even? }
# => #<Enumerator::Lazy: #<Enumerator: #<Enumerator::Generator:0x00007f9f31844ce8>:each>>
1.step.lazy.slice_before { |e| e % 3 == 0 }.take(5).force
# => [[1, 2], [3, 4, 5], [6... -
Enumerator
:: Lazy # slice _ before(pattern) -> Enumerator :: Lazy (19.0) -
Enumerable#slice_before と同じですが、配列ではなく Enumerator::Lazy を返します。
Enumerable#slice_before と同じですが、配列ではなく Enumerator::Lazy を返します。
//emlist[例][ruby]{
1.step.lazy.slice_before { |e| e.even? }
# => #<Enumerator::Lazy: #<Enumerator: #<Enumerator::Generator:0x00007f9f31844ce8>:each>>
1.step.lazy.slice_before { |e| e % 3 == 0 }.take(5).force
# => [[1, 2], [3, 4, 5], [6... -
File
. fnmatch(pattern , path , flags = 0) -> bool (19.0) -
ファイル名のパターンマッチ fnmatch(3) を行います。 path が pattern にマッチすれば真を返します。そうでない場合には false を返します。
ファイル名のパターンマッチ fnmatch(3) を行います。
path が pattern にマッチすれば真を返します。そうでない場合には false を返します。
@param pattern パターンを文字列で指定します。ワイルドカードとして `*',
`**`, `?', `[]', `{}' が使用できます。
//emlist[例][ruby]{
%w(foo foobar bar).each {|f|
p File.fnmatch("foo*", f)
}
# => true
# true
# false
//}
@param p... -
File
. fnmatch?(pattern , path , flags = 0) -> bool (19.0) -
ファイル名のパターンマッチ fnmatch(3) を行います。 path が pattern にマッチすれば真を返します。そうでない場合には false を返します。
ファイル名のパターンマッチ fnmatch(3) を行います。
path が pattern にマッチすれば真を返します。そうでない場合には false を返します。
@param pattern パターンを文字列で指定します。ワイルドカードとして `*',
`**`, `?', `[]', `{}' が使用できます。
//emlist[例][ruby]{
%w(foo foobar bar).each {|f|
p File.fnmatch("foo*", f)
}
# => true
# true
# false
//}
@param p... -
File
. world _ readable?(path) -> Integer | nil (19.0) -
path が全てのユーザから読めるならばそのファイルのパーミッションを表す 整数を返します。そうでない場合は nil を返します。
path が全てのユーザから読めるならばそのファイルのパーミッションを表す
整数を返します。そうでない場合は nil を返します。
整数の意味はプラットフォームに依存します。
@param path パスを表す文字列か IO オブジェクトを指定します。
//emlist[例][ruby]{
m = File.world_readable?("/etc/passwd")
"%o" % m # => "644"
//} -
File
. world _ writable?(path) -> bool (19.0) -
path が全てのユーザから書き込めるならば、そのファイルのパーミッションを表す 整数を返します。そうでない場合は nil を返します。
path が全てのユーザから書き込めるならば、そのファイルのパーミッションを表す
整数を返します。そうでない場合は nil を返します。
整数の意味はプラットフォームに依存します。
@param path パスを表す文字列か IO オブジェクトを指定します。
//emlist[例][ruby]{
m = File.world_writable?("/tmp")
"%o" % m #=> "777"
//} -
File
:: Stat # owned? -> bool (19.0) -
自分のものである時に真を返します。
自分のものである時に真を返します。
//emlist[][ruby]{
printf "%s %s\n", $:[0], File::Stat.new($:[0]).owned?
#例
#=> /usr/local/lib/site_ruby/1.8 false
//} -
FileTest
. # world _ readable?(path) -> Integer | nil (19.0) -
path が全てのユーザから読めるならばそのファイルのパーミッションを表す 整数を返します。そうでない場合は nil を返します。
path が全てのユーザから読めるならばそのファイルのパーミッションを表す
整数を返します。そうでない場合は nil を返します。
整数の意味はプラットフォームに依存します。
@param path パスを表す文字列を指定します。
m = FileTest.world_readable?("/etc/passwd")
"%o" % m # => "644" -
FileTest
. # world _ writable?(path) -> bool (19.0) -
path が全てのユーザから書き込めるならば、そのファイルのパーミッションを表す 整数を返します。そうでない場合は nil を返します。
path が全てのユーザから書き込めるならば、そのファイルのパーミッションを表す
整数を返します。そうでない場合は nil を返します。
整数の意味はプラットフォームに依存します。
@param path パスを表す文字列を指定します。
m = FileTest.world_writable?("/tmp")
"%o" % m #=> "777" -
Float
# **(other) -> Float (19.0) -
算術演算子。冪を計算します。
算術演算子。冪を計算します。
@param other 二項演算の右側の引数(対象)
//emlist[例][ruby]{
# 冪
1.2 ** 3.0 # => 1.7279999999999998
3.0 + 4.5 - 1.3 / 2.4 * 3 % 1.2 ** 3.0 # => 5.875
0.0 ** 0 # => 1.0
//} -
Float
# divmod(other) -> [Numeric] (19.0) -
self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
self を other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
このメソッドは、メソッド / と % によって定義されています。
@param other 自身を割る数を指定します。
//emli... -
Float
# next _ float -> Float (19.0) -
浮動小数点数で表現可能な self の次の値を返します。
浮動小数点数で表現可能な self の次の値を返します。
Float::MAX.next_float、Float::INFINITY.next_float は
Float::INFINITY を返します。Float::NAN.next_float は
Float::NAN を返します。
//emlist[例][ruby]{
p 0.01.next_float # => 0.010000000000000002
p 1.0.next_float # => 1.0000000000000002
p 100.0.next_float # => 100.00000000000001
p ... -
Float
# prev _ float -> Float (19.0) -
浮動小数点数で表現可能な self の前の値を返します。
浮動小数点数で表現可能な self の前の値を返します。
(-Float::MAX).prev_float と (-Float::INFINITY).prev_float
は -Float::INFINITY を返します。Float::NAN.prev_float は
Float::NAN を返します。
//emlist[例][ruby]{
p 0.01.prev_float # => 0.009999999999999998
p 1.0.prev_float # => 0.9999999999999999
p 100.0.prev_float # => 99.9999999999... -
Forwardable
# delegate(hash) -> () (19.0) -
メソッドの委譲先を設定します。
メソッドの委譲先を設定します。
@param hash 委譲先のメソッドがキー、委譲先のオブジェクトが値の
Hash を指定します。キーは Symbol、
String かその配列で指定します。
//emlist[例][ruby]{
require 'forwardable'
class Zap
extend Forwardable
delegate :length => :@str
delegate [:first, :last] => :@arr
def initialize
@arr =... -
Forwardable
# instance _ delegate(hash) -> () (19.0) -
メソッドの委譲先を設定します。
メソッドの委譲先を設定します。
@param hash 委譲先のメソッドがキー、委譲先のオブジェクトが値の
Hash を指定します。キーは Symbol、
String かその配列で指定します。
//emlist[例][ruby]{
require 'forwardable'
class Zap
extend Forwardable
delegate :length => :@str
delegate [:first, :last] => :@arr
def initialize
@arr =... -
Gem
:: Commands :: WhichCommand # find _ paths(package _ name , dirs) -> Array (19.0) -
dirs から package_name という名前を持つファイルを探索します。
dirs から package_name という名前を持つファイルを探索します。
以下の拡張子を持つファイルが対象です。
%w[.rb .rbw .so .dll .bundle]
@param package_name ファイルの名前を指定します。
@param dirs 探索するディレクトリを文字列の配列で指定します。 -
Gem
:: Commands :: WhichCommand :: EXT -> [String] (19.0) -
拡張子を表す配列です。
拡張子を表す配列です。
%w[.rb .rbw .so .dll .bundle] -
Gem
:: Version (19.0) -
文字列で表現されたバージョンを比較可能 (Comparable) にするためのクラスです。
文字列で表現されたバージョンを比較可能 (Comparable) にするためのクラスです。
バージョンを文字列で表したとき、単純に String#<=> で比較すると、
"1.9" のほうが "1.10" よりも大きい(バージョンが高い)ことになってしまい、
正しく判定できません。
Gem::Version はこの問題を解決します。
//emlist[文字列での比較と Gem::Version での比較][ruby]{
p "1.9" < "1.10" # => false
p Gem::Version.new("1.9") < Gem::Version.new("1.10") # => ... -
IO
# stat -> File :: Stat (19.0) -
ファイルのステータスを含む File::Stat オブジェクトを生成して 返します。
ファイルのステータスを含む File::Stat オブジェクトを生成して
返します。
@raise Errno::EXXX ステータスの読み込みに失敗した場合に発生します。
@raise IOError 既に close されていた場合に発生します。
//emlist[例][ruby]{
IO.write("testfile", "This is line one\nThis is line two\n")
File.open("testfile") do |f|
s = f.stat
"%o" % s.mode # => "100644"
s.blksize ... -
Integer
# **(other) -> Numeric (19.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Integer
# pow(other) -> Numeric (19.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Integer
# pow(other , modulo) -> Integer (19.0) -
算術演算子。冪(べき乗)を計算します。
算術演算子。冪(べき乗)を計算します。
@param other 二項演算の右側の引数(対象)
@param modulo 指定すると、計算途中に巨大な値を生成せずに (self**other) % modulo と同じ結果を返します。
@return 計算結果
@raise TypeError 2引数 pow で Integer 以外を指定した場合に発生します。
@raise RangeError 2引数 pow で other に負の数を指定した場合に発生します。
//emlist[][ruby]{
2 ** 3 # => 8
2 ** 0 # => 1
0 ** 0 # => 1
... -
Kernel
$ $ & -> String | nil (19.0) -
現在のスコープで最後に成功した正規表現のパターンマッチでマッチした文字列です。 最後のマッチが失敗していた場合には nil となります。
現在のスコープで最後に成功した正規表現のパターンマッチでマッチした文字列です。
最後のマッチが失敗していた場合には nil となります。
Regexp.last_match[0] と同じです。
この変数はローカルスコープかつスレッドローカル、読み取り専用です。
Ruby起動時の初期値は nil です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)">(.*?)</a>] =~ str
p $&
end
#=> "<a href=... -
Kernel
$ $ & # 39; -> String | nil (19.0) -
現在のスコープで最後に成功した正規表現のパターンマッチでマッチした 部分より後ろの文字列です。 最後のマッチが失敗していた場合には nil となります。
現在のスコープで最後に成功した正規表現のパターンマッチでマッチした
部分より後ろの文字列です。
最後のマッチが失敗していた場合には nil となります。
Regexp.last_match.post_match と同じです。
この変数はローカルスコープかつスレッドローカル、読み取り専用です。
Ruby起動時の初期値は nil です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)">(.*?)</a>] =~ str
p $'
en... -
Kernel
$ $ 1 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 10 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 11 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 2 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 3 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 4 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 5 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 6 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 7 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 8 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ 9 -> String | nil (19.0) -
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。 該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
最後に成功したパターンマッチで n 番目の括弧にマッチした値が格納されます。
該当する括弧がなければ nil が入っています。(覚え方: \数字 のようなもの)
番号 n はいくらでも大きな正整数を利用できます。
Regexp.last_match(1),
Regexp.last_match(2), ... と同じ。
これらの変数はローカルスコープかつスレッドローカル、読み取り専用です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)... -
Kernel
$ $ OFS -> String | nil (19.0) -
$, の別名
$, の別名
require "English"
array = %w|hoge fuga ugo bar foo|
p array.join #=> "hogefugaugobarfoo"
$OUTPUT_FIELD_SEPARATOR = ","
p array.join #=> "hoge,fuga,ugo,bar,foo" -
Kernel
$ $ OUTPUT _ FIELD _ SEPARATOR -> String | nil (19.0) -
$, の別名
$, の別名
require "English"
array = %w|hoge fuga ugo bar foo|
p array.join #=> "hogefugaugobarfoo"
$OUTPUT_FIELD_SEPARATOR = ","
p array.join #=> "hoge,fuga,ugo,bar,foo" -
Kernel
$ $ PID -> Integer (19.0) -
$$ の別名
$$ の別名
require "English"
p sprintf("something%s", $PID) #=> "something5543" など -
Kernel
$ $ PROCESS _ ID -> Integer (19.0) -
$$ の別名
$$ の別名
require "English"
p sprintf("something%s", $PID) #=> "something5543" など -
Kernel
$ $ ` -> String | nil (19.0) -
現在のスコープで最後に成功した正規表現のパターンマッチでマッチした 部分より前の文字列です。 最後のマッチが失敗していた場合には nil となります。
現在のスコープで最後に成功した正規表現のパターンマッチでマッチした
部分より前の文字列です。
最後のマッチが失敗していた場合には nil となります。
Regexp.last_match.pre_match と同じです。
この変数はローカルスコープかつスレッドローカル、読み取り専用です。
Ruby起動時の初期値は nil です。
//emlist[例][ruby]{
str = '<p><a href="http://example.com">example.com</a></p>'
if %r[<a href="(.*?)">(.*?)</a>] =~ str
p $`
end
... -
Kernel
$ $ ~ -> MatchData | nil (19.0) -
現在のスコープで最後に成功したマッチに関する MatchDataオブジェクトです。 Regexp.last_match の別名です。
現在のスコープで最後に成功したマッチに関する MatchDataオブジェクトです。
Regexp.last_match の別名です。
このデータから n 番目のマッチ ($n) を取り出すためには $~[n] を使います。
この値に代入すると Regexp.last_match や、 $&, $1, $2, ... などの関連する組み込み変数の値が変化します。
MatchData オブジェクトでも nil でもない値を代入しようとすると TypeError が発生します。
この変数はローカルスコープかつスレッドローカルです。
Ruby起動時の初期値は nil です。
//emlist... -
Kernel
. # test(cmd , file1 , file2) -> bool (19.0) -
2ファイル間のファイルテストを行います。
2ファイル間のファイルテストを行います。
@param cmd 以下に示す文字リテラル、文字列、あるいは同じ文字を表す数値
です。文字列の場合はその先頭の文字だけをコマンドとみなします。
@param file1 テストするファイルのパスを表す文字列か IO オブジェクトを指定します。
@param file2 テストするファイルのパスを表す文字列か IO オブジェクトを指定します。
@return 真偽値を返します。
以下は cmd として指定できる文字リテラルとその意味です。
: ?=
ファイル1とファイル2の最終更新時刻が等しい
: ?>
フ... -
Marshal フォーマット (19.0)
-
Marshal フォーマット フォーマットバージョン 4.8 を元に記述しています。
Marshal フォーマット
フォーマットバージョン 4.8 を元に記述しています。
=== nil, true, false
それぞれ、'0', 'T', 'F' になります。
//emlist[][ruby]{
p Marshal.dump(nil).unpack1("x2 a*") # => "0"
p Marshal.dump(true).unpack1("x2 a*") # => "T"
p Marshal.dump(false).unpack1("x2 a*") # => "F"
//}
Ruby 2.1 以前では、インスタンス変数を設定しても dump されません... -
Module
# class _ eval {|mod| . . . } -> object (19.0) -
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを 評価してその結果を返します。
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを
評価してその結果を返します。
モジュールのコンテキストで評価するとは、実行中そのモジュールが self になるということです。
つまり、そのモジュールの定義式の中にあるかのように実行されます。
ただし、ローカル変数は module_eval/class_eval の外側のスコープと共有します。
定数とクラス変数のスコープは、文字列が与えられた場合とブロックが与えられた場合で挙動が異なります。
文字列が与えられた場合には、定数とクラス変数のスコープは自身のモジュール定義式内と同じスコープ... -
Module
# class _ eval(expr , fname = "(eval)" , lineno = 1) -> object (19.0) -
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを 評価してその結果を返します。
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを
評価してその結果を返します。
モジュールのコンテキストで評価するとは、実行中そのモジュールが self になるということです。
つまり、そのモジュールの定義式の中にあるかのように実行されます。
ただし、ローカル変数は module_eval/class_eval の外側のスコープと共有します。
定数とクラス変数のスコープは、文字列が与えられた場合とブロックが与えられた場合で挙動が異なります。
文字列が与えられた場合には、定数とクラス変数のスコープは自身のモジュール定義式内と同じスコープ... -
Module
# module _ eval {|mod| . . . } -> object (19.0) -
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを 評価してその結果を返します。
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを
評価してその結果を返します。
モジュールのコンテキストで評価するとは、実行中そのモジュールが self になるということです。
つまり、そのモジュールの定義式の中にあるかのように実行されます。
ただし、ローカル変数は module_eval/class_eval の外側のスコープと共有します。
定数とクラス変数のスコープは、文字列が与えられた場合とブロックが与えられた場合で挙動が異なります。
文字列が与えられた場合には、定数とクラス変数のスコープは自身のモジュール定義式内と同じスコープ... -
Module
# module _ eval(expr , fname = "(eval)" , lineno = 1) -> object (19.0) -
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを 評価してその結果を返します。
モジュールのコンテキストで文字列 expr またはモジュール自身をブロックパラメータとするブロックを
評価してその結果を返します。
モジュールのコンテキストで評価するとは、実行中そのモジュールが self になるということです。
つまり、そのモジュールの定義式の中にあるかのように実行されます。
ただし、ローカル変数は module_eval/class_eval の外側のスコープと共有します。
定数とクラス変数のスコープは、文字列が与えられた場合とブロックが与えられた場合で挙動が異なります。
文字列が与えられた場合には、定数とクラス変数のスコープは自身のモジュール定義式内と同じスコープ... -
NEWS for Ruby 2
. 2 . 0 (19.0) -
NEWS for Ruby 2.2.0 このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
NEWS for Ruby 2.2.0
このドキュメントは前回リリース以降のバグ修正を除くユーザーに影響のある機能の変更のリストです。
それぞれのエントリーは参照情報があるため短いです。
十分な情報と共に書かれた全ての変更のリストは ChangeLog ファイルか bugs.ruby-lang.org の issue を参照してください。
== 2.1.0 以降の変更
=== 言語仕様の変更
* nil/true/false
* nil/true/false はフリーズされました 8923
* Hash リテラル
* 後ろにコロンのあるシンボルをキーにしたと... -
Numeric
# divmod(other) -> [Numeric] (19.0) -
self を other で割った商 q と余り r を、 [q, r] という 2 要素の配列にして返します。 商 q は常に整数ですが、余り r は整数であるとは限りません。
self を other で割った商 q と余り r を、
[q, r] という 2 要素の配列にして返します。
商 q は常に整数ですが、余り r は整数であるとは限りません。
ここで、商 q と余り r は、
* self == other * q + r
と
* other > 0 のとき: 0 <= r < other
* other < 0 のとき: other < r <= 0
* q は整数
をみたす数です。
divmod が返す商は Numeric#div と同じです。
また余りは、Numeric#modulo と同じです。
このメソッド... -
Numeric
# nonzero? -> self | nil (19.0) -
自身がゼロの時 nil を返し、非ゼロの時 self を返します。
自身がゼロの時 nil を返し、非ゼロの時 self を返します。
//emlist[例][ruby]{
p 10.nonzero? #=> 10
p 0.nonzero? #=> nil
p 0.0.nonzero? #=> nil
p Rational(0, 2).nonzero? #=> nil
//}
非ゼロの時に self を返すため、自身が 0 の時に他の処理をさせたい場合に以
下のように記述する事もできます。
//emlist[例][ruby]{
a = %w( z Bb bB bb BB a... -
OpenSSL
:: BN . generate _ prime(bits , safe=true , add=nil , rem=nil) -> OpenSSL :: BN (19.0) -
ランダム(擬似乱数的)な bits ビットの素数を返します。
ランダム(擬似乱数的)な bits ビットの素数を返します。
暗号的に意味のある素数は十分大きくないといけないので、
bits が小さすぎる場合は期待する結果を返しません。
safe が真であれば、「安全な」素数((p-1)/2が素数である素数p)を
返します。
add に整数を渡すと、 p % add == rem であるような
素数pのみを返します。rem が nil の場合は rem=1と見なします。
@param bits 生成するランダム素数のビット数
@param safe true で安全な素数のみを生成する
@param add 生成する素数の剰余の条件
@param ... -
OptionParser
# environment(env) -> [String] (19.0) -
環境変数 env に対して Shellwords.#shellwords を呼 んで配列にしてから parse を行ないます。
環境変数 env に対して
Shellwords.#shellwords を呼
んで配列にしてから parse を行ないます。
@param env 環境変数名を文字列で与えます。
@raise OptionParser::ParseError パースに失敗した場合、発生します。
実際は OptionParser::ParseError のサブク
ラスになります。
//emlist[例][ruby]{
require "optparse"
config = ... -
OptionParser
# load(filename = nil) -> bool (19.0) -
指定された filename を読み込んで各行をまとめたものに対して OptionParser#parse を行ないます。
指定された filename を読み込んで各行をまとめたものに対して OptionParser#parse を行ないます。
パースが成功した場合に true を返します。
ファイルが存在しなかった場合に false を返します。
@param filename 各行をパースしたいファイルの名前を文字列で指定します。
指定されないか nil である場合、~/.options/ に
プログラムのサフィックスを付けた '~/.options/コマンド名' というファイルをパースします。
//emlist[例][ruby]{
re... -
Process
. # setproctitle(title) -> String (19.0) -
ps(1) が出力する現在実行中の Ruby スクリプトの名前を引数 title で指定した文字列に変更します。
ps(1) が出力する現在実行中の Ruby スクリプトの名前を引数 title
で指定した文字列に変更します。
OS によっては何も行われません。また、処理結果に関係なく例外は発生しませ
ん。サポートされる OS ではない場合であっても NotImplementedError
が発生する事はありません。本メソッドを実行しても $0 への影響はあ
りません。
Process.setproctitle('myapp: worker #%d' % worker_id)
本メソッドは 2.1 以降でグローバル変数を用いないで現在実行中の Ruby スク
リプトの名前を表す文字列を設定す... -
Profiler
_ _ (19.0) -
プロファイラの実装です。 Profiler__.start_profile 実行から、Profiler__.stop_profile までの 区間の実行コードのプロファイルを取得します。
プロファイラの実装です。
Profiler__.start_profile 実行から、Profiler__.stop_profile までの
区間の実行コードのプロファイルを取得します。
以下の使用例を参照してください。
require 'profiler'
Profiler__.start_profile
require 'tk' # このコードのプロファイルが測定される
Profiler__.print_profile(STDOUT)
# =>
% cumulative self self ... -
Psych
:: Emitter (19.0) -
Psych::Parser でパースし、生じたイベントから YAML ドキュメントを再構築するようなハンドラです。
Psych::Parser でパースし、生じたイベントから
YAML ドキュメントを再構築するようなハンドラです。
以下の例では STDIN から YAML ドキュメントを入力し、
再構築した YAML ドキュメントを STDERR に出力します。
parser = Psych::Parser.new(Psych::Emitter.new($stderr))
parser.parse($stdin)
また、以下のようにイベントを手動で発生させることで
YAML ドキュメントを構築させることもできます。
各メソッドの意味については Psych::Handler を参照してください... -
Psych
:: Nodes :: Mapping (19.0) -
YAML の mapping http://yaml.org/spec/1.1/#mapping を表すクラスです。
YAML の mapping http://yaml.org/spec/1.1/#mapping を表すクラスです。
Psych::Nodes::Mapping は 0 個以上の子ノードを持つことができます。
子ノードの個数は偶数でなければなりません。
子ノードは以下のいずれかクラスのインスタンスでなければなりません。
* Psych::Nodes::Sequence
* Psych::Nodes::Mapping
* Psych::Nodes::Scalar
* Psych::Nodes::Alias
子ノードは mapping のキーと値が交互に並んでいます。
as... -
REXML
:: DocType # write(output , indent = 0 , transitive = false , ie _ hack = false) -> () (19.0) -
output に DTD を出力します。
output に DTD を出力します。
このメソッドは deprecated です。REXML::Formatter で
出力してください。
@param output 出力先の IO オブジェクト
@param indent インデントの深さ。指定しないでください。
@param transitive 無視されます。指定しないでください。
@param ie_hack 無視されます。指定しないでください。
//emlist[][ruby]{
require 'rexml/document'
doctype = REXML::Document.new(<<EOS).doctype
<... -
REXML
:: Entity (19.0) -
XML における実体(エンティティ、entity)の宣言(declaration)を表わすクラス。
XML における実体(エンティティ、entity)の宣言(declaration)を表わすクラス。
DTD(REXML::DocType)内の実体宣言に対応するものです。
//emlist[][ruby]{
require 'rexml/document'
doc = REXML::Document.new(<<EOS)
<!DOCTYPE document [
<!ENTITY f "foo bar baz">
<!ENTITY x SYSTEM "x.txt">
<!ENTITY y SYSTEM "y.png" NDATA PNG>
<!ENTITY % z "zzz">
<!EN... -
REXML
:: Entity # unnormalized -> String | nil (19.0) -
非正規化された(unnormalized)実体の値を返します。
非正規化された(unnormalized)実体の値を返します。
すなわち、self が属する DTD によってすべての実体参照(&ent; と %ent; の両方)
を展開した文字列を返します。
外部実体(external entity)宣言の場合は nil を返します。
@see REXML::Entity#value, REXML::Entity#normalized -
REXML
:: Entity . matches?(string) -> bool (19.0) -
string が実体宣言の文法に従う文字列であれば真を返します。
string が実体宣言の文法に従う文字列であれば真を返します。
@param string 判定対象の文字列
//emlist[][ruby]{
require 'rexml/document'
p REXML::Entity.matches?('<!ENTITY s "seal">') # => true
p REXML::Entity.matches?('<!ENTITY % s "seal">') # => true
p REXML::Entity.matches?('<!ELEMENT br EMPTY >') # => false
//} -
REXML
:: Text . new(arg , respect _ whitespace = false , parent = nil , raw = nil , entity _ filter = nil , illegal = REXML :: Text :: NEEDS _ A _ SECOND _ CHECK) (19.0) -
テキストノードオブジェクトを生成します。
テキストノードオブジェクトを生成します。
arg でノードの内容を指定します。
文字列の場合はそれが内容として使われます。
REXML::Text オブジェクトの場合はその内容が複製されます。
respect_whitespace に真を指定すると、arg に含まれる空白文字は保存されます。
偽の場合は空白はまとめられます。
raw は true, false, nil のいずれかを指定し、生成されるテキストノードが
raw モードであるかどうかを決めます。
true の場合、そのノードは raw モードであると解釈され、
テキストにはエスケープされていないXMLマークアップは
含まれ... -
Rake
:: FileList # include(*filenames) -> self (19.0) -
ファイル名のパターンを追加リストに登録します。 配列が与えられた場合、配列の各要素が追加されます。
ファイル名のパターンを追加リストに登録します。
配列が与えられた場合、配列の各要素が追加されます。
@param filenames 追加するファイル名のパターンを指定します。
例:
file_list.include("*.java", "*.cfg")
file_list.include %w( math.c lib.h *.o ) -
Readline
. completion _ proc=(proc) (19.0) -
ユーザからの入力を補完する時の候補を取得する Proc オブジェクト proc を指定します。 proc は、次のものを想定しています。 (1) callメソッドを持つ。callメソッドを持たない場合、例外 ArgumentError を発生します。 (2) 引数にユーザからの入力文字列を取る。 (3) 候補の文字列の配列を返す。
ユーザからの入力を補完する時の候補を取得する Proc オブジェクト
proc を指定します。
proc は、次のものを想定しています。
(1) callメソッドを持つ。callメソッドを持たない場合、例外 ArgumentError を発生します。
(2) 引数にユーザからの入力文字列を取る。
(3) 候補の文字列の配列を返す。
「/var/lib /v」の後で補完を行うと、
デフォルトでは proc の引数に「/v」が渡されます。
このように、ユーザが入力した文字列を
Readline.completer_word_break_characters に含まれる文字で区切った... -
Set
# divide {|o1 , o2| . . . } -> Set (19.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
ブロックパラメータが 1 個の場合、block.call(o1) == block.call(o2) が真
ならば、o1 と o2 は同じ分割に属します。
ブロックパラメータが 2 個の場合、block.call(o1, o2) が真ならば、
o1 と o2 は同じ分割に属します。
この場合、block.call(o1, o2) == block.call(o2, o1)
が成立しないブロックを与えると期待通りの結果が得られません。
//emlist[例1][ruby]{
require 'set'
numbe... -
Set
# divide {|o| . . . } -> Set (19.0) -
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
元の集合をブロックで定義される関係で分割し、その結果を集合として返します。
ブロックパラメータが 1 個の場合、block.call(o1) == block.call(o2) が真
ならば、o1 と o2 は同じ分割に属します。
ブロックパラメータが 2 個の場合、block.call(o1, o2) が真ならば、
o1 と o2 は同じ分割に属します。
この場合、block.call(o1, o2) == block.call(o2, o1)
が成立しないブロックを与えると期待通りの結果が得られません。
//emlist[例1][ruby]{
require 'set'
numbe... -
Struct
# select -> Enumerator (19.0) -
構造体のメンバの値に対してブロックを評価した値が真であった要素を全て含 む配列を返します。真になる要素がひとつもなかった場合は空の配列を返しま す。
構造体のメンバの値に対してブロックを評価した値が真であった要素を全て含
む配列を返します。真になる要素がひとつもなかった場合は空の配列を返しま
す。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
Lots = Struct.new(:a, :b, :c, :d, :e, :f)
l = Lots.new(11, 22, 33, 44, 55, 66)
l.select {|v| (v % 2).zero? } #=> [22, 44, 66]
//}
[注意] 本メソッドの記述は Struct の下位クラスのインスタンスに対して... -
Struct
# select {|i| . . . } -> [object] (19.0) -
構造体のメンバの値に対してブロックを評価した値が真であった要素を全て含 む配列を返します。真になる要素がひとつもなかった場合は空の配列を返しま す。
構造体のメンバの値に対してブロックを評価した値が真であった要素を全て含
む配列を返します。真になる要素がひとつもなかった場合は空の配列を返しま
す。
ブロックを省略した場合は Enumerator を返します。
//emlist[例][ruby]{
Lots = Struct.new(:a, :b, :c, :d, :e, :f)
l = Lots.new(11, 22, 33, 44, 55, 66)
l.select {|v| (v % 2).zero? } #=> [22, 44, 66]
//}
[注意] 本メソッドの記述は Struct の下位クラスのインスタンスに対して... -
Syslog (19.0)
-
UNIXのsyslogのラッパーモジュール。 syslog の詳細については syslog(3) を参照してください。
UNIXのsyslogのラッパーモジュール。
syslog の詳細については syslog(3) を参照してください。
require 'syslog'
Syslog.open("syslogtest")
Syslog.log(Syslog::LOG_WARNING, "the sky is falling in %d seconds!", 100)
Syslog.close
# 書き込まれているか確かめる。
# 但し、実行環境によってログの場所が違う。くわしくはsyslog.confを参照。
File.foreach('/var/log/system.log'... -
Syslog
. # alert(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # close -> nil (19.0) -
syslogを閉じます。
syslogを閉じます。
@raise RuntimeError syslog がopen されていない場合発生します。
使用例
require 'syslog'
Syslog.open("syslogtest")
Syslog.log(Syslog::LOG_WARNING, "the sky is falling in %d seconds!", 100)
Syslog.close -
Syslog
. # crit(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # debug(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # emerg(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # err(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # info(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # notice(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
Syslog
. # open(ident= $ 0 , options=Syslog :: LOG _ PID|Syslog :: LOG _ CONS , facility=Syslog :: LOG _ USER) -> self (19.0) -
与えられた引数でsyslogを開きます。以降、他の Syslog モジュール関数が使 用可能となります。
与えられた引数でsyslogを開きます。以降、他の Syslog モジュール関数が使
用可能となります。
ブロック付きで呼ばれた場合は、self を引数としてブロックを実行し、
最後に Syslog.#close を行います。
syslog の詳細については syslog(3) を参照してください。
@param ident すべてのログにつく識別子で、どのプログラムから送られ
たログなのかを識別するために使われる文字列を指定します。
指定しない場合はプログラム名が使われます。
@param options Syslog.open ... -
Syslog
. # open(ident= $ 0 , options=Syslog :: LOG _ PID|Syslog :: LOG _ CONS , facility=Syslog :: LOG _ USER) { |syslog| . . . } -> self (19.0) -
与えられた引数でsyslogを開きます。以降、他の Syslog モジュール関数が使 用可能となります。
与えられた引数でsyslogを開きます。以降、他の Syslog モジュール関数が使
用可能となります。
ブロック付きで呼ばれた場合は、self を引数としてブロックを実行し、
最後に Syslog.#close を行います。
syslog の詳細については syslog(3) を参照してください。
@param ident すべてのログにつく識別子で、どのプログラムから送られ
たログなのかを識別するために使われる文字列を指定します。
指定しない場合はプログラム名が使われます。
@param options Syslog.open ... -
Syslog
. # opened? -> bool (19.0) -
syslog をオープンしていれば真を返します。
syslog をオープンしていれば真を返します。
使用例
require 'syslog'
p Syslog.opened? #=> false
Syslog.open("syslogtest")
Syslog.log(Syslog::LOG_WARNING, "the sky is falling in %d seconds!", 100)
p Syslog.opened? #=> true -
Syslog
. # warning(message , *arg) -> self (19.0) -
Syslog#log()のショートカットメソッド。 システムによっては定義されていないものもあります。
Syslog#log()のショートカットメソッド。
システムによっては定義されていないものもあります。
例えば、Syslog.emerg(message, *arg) は、Syslog.log(Syslog::LOG_EMERG, message, *arg)
と同じです。
@param message フォーマット文字列です。Kernel.#sprintf と同じ形式の引数を指定します。
@param arg フォーマットされる引数です。
@raise ArgumentError 引数が1つ以上でない場合に発生します。
@raise RuntimeError syslog がop... -
TSort
# each _ strongly _ connected _ component _ from(node , id _ map={} , stack=[]) -> Enumerator (19.0) -
node から到達可能な強連結成分についてのイテレータです。
node から到達可能な強連結成分についてのイテレータです。
返す値は規定されていません。
each_strongly_connected_component_from は
tsort_each_node を呼びません。
@param node ノードを指定します。
//emlist[例 到達可能なノードを表示する][ruby]{
require 'tsort'
class Hash
include TSort
alias tsort_each_node each_key
def tsort_each_child(node, &block)
fetch(node... -
TSort
# each _ strongly _ connected _ component _ from(node , id _ map={} , stack=[]) {|nodes| . . . } -> () (19.0) -
node から到達可能な強連結成分についてのイテレータです。
node から到達可能な強連結成分についてのイテレータです。
返す値は規定されていません。
each_strongly_connected_component_from は
tsort_each_node を呼びません。
@param node ノードを指定します。
//emlist[例 到達可能なノードを表示する][ruby]{
require 'tsort'
class Hash
include TSort
alias tsort_each_node each_key
def tsort_each_child(node, &block)
fetch(node... -
TSort
# tsort _ each -> Enumerator (19.0) -
TSort#tsort メソッドのイテレータ版です。 obj.tsort_each は obj.tsort.each と似ていますが、 ブロックの評価中に obj が変更された場合は予期しない結果になる ことがあります。
TSort#tsort メソッドのイテレータ版です。
obj.tsort_each は obj.tsort.each と似ていますが、
ブロックの評価中に obj が変更された場合は予期しない結果になる
ことがあります。
tsort_each は nil を返します。
閉路が存在するとき、例外 TSort::Cyclic を起こします。
@raise TSort::Cyclic 閉路が存在するとき、発生します.
//emlist[使用例][ruby]{
require 'tsort'
class Hash
include TSort
alias tsort_each_node... -
TSort
# tsort _ each {|node| . . . } -> nil (19.0) -
TSort#tsort メソッドのイテレータ版です。 obj.tsort_each は obj.tsort.each と似ていますが、 ブロックの評価中に obj が変更された場合は予期しない結果になる ことがあります。
TSort#tsort メソッドのイテレータ版です。
obj.tsort_each は obj.tsort.each と似ていますが、
ブロックの評価中に obj が変更された場合は予期しない結果になる
ことがあります。
tsort_each は nil を返します。
閉路が存在するとき、例外 TSort::Cyclic を起こします。
@raise TSort::Cyclic 閉路が存在するとき、発生します.
//emlist[使用例][ruby]{
require 'tsort'
class Hash
include TSort
alias tsort_each_node... -
ThreadsWait
# all _ waits -> () (19.0) -
指定されたスレッドすべてが終了するまで待ちます。 ブロックが与えられた場合、スレッド終了時にブロックを評価します。
指定されたスレッドすべてが終了するまで待ちます。
ブロックが与えられた場合、スレッド終了時にブロックを評価します。
使用例
require 'thwait'
threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}
thall = ThreadsWait.new(*threads)
thall.all_waits{|th|
printf("end %s\n", th.inspect)
}
# 出力例
#=> #<Thread... -
ThreadsWait
. all _ waits(*threads) -> () (19.0) -
指定されたスレッドすべてが終了するまで待ちます。 ブロックが与えられた場合、スレッド終了時にブロックを評価します。
指定されたスレッドすべてが終了するまで待ちます。
ブロックが与えられた場合、スレッド終了時にブロックを評価します。
@param threads 終了するまでまつスレッドを一つもしくは複数指定します。
require 'thwait'
threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}
ThreadsWait.all_waits(*threads) {|th| printf("end %s\n", th.inspect) }
# 出力例
#=... -
ThreadsWait
. all _ waits(*threads) {|thread| . . . } -> () (19.0) -
指定されたスレッドすべてが終了するまで待ちます。 ブロックが与えられた場合、スレッド終了時にブロックを評価します。
指定されたスレッドすべてが終了するまで待ちます。
ブロックが与えられた場合、スレッド終了時にブロックを評価します。
@param threads 終了するまでまつスレッドを一つもしくは複数指定します。
require 'thwait'
threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}
ThreadsWait.all_waits(*threads) {|th| printf("end %s\n", th.inspect) }
# 出力例
#=... -
ThreadsWait
. new(*threads) -> ThreadsWait (19.0) -
指定されたスレッドの終了をまつための、スレッド同期オブジェクトをつくります。
指定されたスレッドの終了をまつための、スレッド同期オブジェクトをつくります。
@param threads 終了を待つスレッドを一つもしくは複数指定します。
使用例
require 'thwait'
threads = []
5.times {|i|
threads << Thread.new { sleep 1; p Thread.current }
}
thall = ThreadsWait.new(*threads)
thall.all_waits{|th|
printf("end %s\n", th.inspect)
}
... -
Time
# nsec -> Integer (19.0) -
時刻のナノ秒の部分を整数で返します。
時刻のナノ秒の部分を整数で返します。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p "%10.9f" % t.to_f # => "946749845.000005960"
p t.nsec # => 6000
//}
IEEE 754 浮動小数点数で表現できる精度が違うため、Time#to_fの最小
の桁とnsecの最小の桁は異なります。nsecで表される値の方が正確です。 -
Time
# subsec -> Integer | Rational (19.0) -
時刻を表す分数を返します。
時刻を表す分数を返します。
Rational を返す場合があります。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p "%10.9f" % t.to_f # => "946749845.000005960"
p t.subsec #=> (3/500000)
//}
to_f の値と subsec の値の下のほうの桁の値は異なる場合があります。
というのは IEEE 754 double はそれを表すのに十分な精度を
持たないからです。subsec で得られる値が正確です。 -
Time
# to _ f -> Float (19.0) -
起算時からの経過秒数を浮動小数点数で返します。1 秒に満たない経過も 表現されます。
起算時からの経過秒数を浮動小数点数で返します。1 秒に満たない経過も
表現されます。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p t # => 2000-01-02 03:04:05 +0900
p "%10.6f" % t.to_f # => "946749845.000006"
p t.to_i # => 946749845
//} -
Time
# to _ i -> Integer (19.0) -
起算時からの経過秒数を整数で返します。
起算時からの経過秒数を整数で返します。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p t # => 2000-01-02 03:04:05 +0900
p "%10.6f" % t.to_f # => "946749845.000006"
p t.to_i # => 946749845
p t.tv_sec # => 946749845
//} -
Time
# tv _ nsec -> Integer (19.0) -
時刻のナノ秒の部分を整数で返します。
時刻のナノ秒の部分を整数で返します。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p "%10.9f" % t.to_f # => "946749845.000005960"
p t.nsec # => 6000
//}
IEEE 754 浮動小数点数で表現できる精度が違うため、Time#to_fの最小
の桁とnsecの最小の桁は異なります。nsecで表される値の方が正確です。 -
Time
# tv _ sec -> Integer (19.0) -
起算時からの経過秒数を整数で返します。
起算時からの経過秒数を整数で返します。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p t # => 2000-01-02 03:04:05 +0900
p "%10.6f" % t.to_f # => "946749845.000006"
p t.to_i # => 946749845
p t.tv_sec # => 946749845
//} -
Time
# tv _ usec -> Integer (19.0) -
時刻のマイクロ秒の部分を整数で返します。
時刻のマイクロ秒の部分を整数で返します。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p "%10.6f" % t.to_f #=> "946749845.000006"
p t.usec #=> 6
//} -
Time
# usec -> Integer (19.0) -
時刻のマイクロ秒の部分を整数で返します。
時刻のマイクロ秒の部分を整数で返します。
//emlist[][ruby]{
t = Time.local(2000,1,2,3,4,5,6)
p "%10.6f" % t.to_f #=> "946749845.000006"
p t.usec #=> 6
//} -
WEBrick
:: AccessLog :: CLF _ TIME _ FORMAT -> String (19.0) -
Apache のアクセスログと同じ時刻の形式を表す文字列です。
Apache のアクセスログと同じ時刻の形式を表す文字列です。
@return 以下の文字列を返します。
//emlist{{
"[%d/%b/%Y:%H:%M:%S %Z]"
//}}