るりまサーチ (Ruby 2.6.0)

最速Rubyリファレンスマニュアル検索!
12件ヒット [1-12件を表示] (0.098秒)

別のキーワード

  1. _builtin float
  2. float to_d
  3. json float
  4. float rationalize
  5. fiddle align_float

ライブラリ

クラス

キーワード

検索結果

Float#arg -> 0 | Float (108652.0)

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

//emlist[例][ruby]{
1.arg # => 0
-1.arg # => 3.141592653589793
//}

ただし、自身が NaN(Not a number) であった場合は、NaN を返します。

Float#angle -> 0 | Float (63352.0)

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

//emlist[例][ruby]{
1.arg # => 0
-1.arg # => 3.141592653589793
//}

ただし、自身が NaN(Not a number) であった場合は、NaN を返します。

Float#phase -> 0 | Float (63352.0)

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

自身の偏角(正の数なら 0、負の数なら Math::PI)を返します。

//emlist[例][ruby]{
1.arg # => 0
-1.arg # => 3.141592653589793
//}

ただし、自身が NaN(Not a number) であった場合は、NaN を返します。

Complex#arg -> Float (45778.0)

自身の偏角を[-π,π]の範囲で返します。

自身の偏角を[-π,π]の範囲で返します。

//emlist[例][ruby]{
Complex.polar(3, Math::PI/2).arg # => 1.5707963267948966
//}

非正の実軸付近での挙動に注意してください。以下の例のように虚部が 0.0 と
-0.0 では値が変わります。

//emlist[例][ruby]{
Complex(-1, 0).arg #=> 3.141592653589793
Complex(-1, -0).arg #=> 3.141592653589793
Complex(-1...

Enumerator::Lazy#enum_for(method = :each, *args) {|*args| block} -> Enumerator::Lazy (622.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

絞り込み条件を変える

Enumerator::Lazy#to_enum(method = :each, *args) {|*args| block} -> Enumerator::Lazy (622.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Complex#angle -> Float (478.0)

自身の偏角を[-π,π]の範囲で返します。

自身の偏角を[-π,π]の範囲で返します。

//emlist[例][ruby]{
Complex.polar(3, Math::PI/2).arg # => 1.5707963267948966
//}

非正の実軸付近での挙動に注意してください。以下の例のように虚部が 0.0 と
-0.0 では値が変わります。

//emlist[例][ruby]{
Complex(-1, 0).arg #=> 3.141592653589793
Complex(-1, -0).arg #=> 3.141592653589793
Complex(-1...

Complex#phase -> Float (478.0)

自身の偏角を[-π,π]の範囲で返します。

自身の偏角を[-π,π]の範囲で返します。

//emlist[例][ruby]{
Complex.polar(3, Math::PI/2).arg # => 1.5707963267948966
//}

非正の実軸付近での挙動に注意してください。以下の例のように虚部が 0.0 と
-0.0 では値が変わります。

//emlist[例][ruby]{
Complex(-1, 0).arg #=> 3.141592653589793
Complex(-1, -0).arg #=> 3.141592653589793
Complex(-1...

String#%(args) -> String (358.0)

printf と同じ規則に従って args をフォーマットします。

printf と同じ規則に従って args をフォーマットします。

args が配列であれば Kernel.#sprintf(self, *args) と同じです。
それ以外の場合は Kernel.#sprintf(self, args) と同じです。

@param args フォーマットする値、もしくはその配列
@return フォーマットされた文字列

//emlist[例][ruby]{
p "i = %d" % 10 # => "i = 10"
p "i = %x" % 10 # => "i = a"
p "i = %o" % 10...

Enumerator::Lazy#enum_for(method = :each, *args) -> Enumerator::Lazy (322.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

絞り込み条件を変える

Enumerator::Lazy#to_enum(method = :each, *args) -> Enumerator::Lazy (322.0)

Object#to_enum と同じですが、Enumerator::Lazy を返します。

Object#to_enum と同じですが、Enumerator::Lazy を返します。

to_enum は「ブロック付きで呼ぶとループを実行し、ブロックを省略した場合は
Enumerator を返す」ようなメソッドを定義するときによく使われます。
このときに lazy 性が正しく引き継がれるように、Lazy#to_enum は
素のEnumerator ではなく Enumerator::Lazy を返すようになっています。

//emlist[例][ruby]{
module Enumerable
# 要素をn回ずつ繰り返すメソッド
# 例:[1,2,3].repeat(2) ...

Fiddle::Function#call(*args) -> Integer|DL::CPtr|nil (322.0)

関数を呼び出します。

関数を呼び出します。

Fiddle::Function.new で指定した引数と返り値の型に基いて
Ruby のオブジェクトを適切に C のデータに変換して C の関数を呼び出し、
その返り値を Ruby のオブジェクトに変換して返します。

引数の変換は以下の通りです。

: void* (つまり任意のポインタ型)
nil ならば C の NULL に変換されます
Fiddle::Pointer は保持している C ポインタに変換されます。
文字列であればその先頭ポインタになります。
IO オブジェクトであれば FILE* が渡されます。
整数であればそれがアドレスとみ...